For a Hilbert space operator T∈B(H), let LT and RT∈B(B(H)) denote, respectively, the operators of left multiplication and right multiplication by T. For positive integers m and n, let ▵T∗,Tm(I)=(LT∗RT−I)m(I) and δT∗,Tn(I)=(LT∗−RT)m(I). The operator T is said to be (m,n)-isosymmetric if ▵T∗,TmδT∗,Tn(I)=0. Power bounded (m,n)-isosymmetric operators T∈B(H) have an upper triangular matrix representation T=T1T30T2∈B(H1⊕H2) such that T1∈B(H1) is a C0.-operator which satisfies δT1∗,T1n(I|H1)=0 and T2∈B(H2) is a C1.-operator which satisfies AT2=(Vu⊕Vb)|H2A, A=limt→∞T2∗tT2t, Vu is a unitary and Vb is a bilateral shift. If, in particular, T is cohyponormal, then T is the direct sum of a unitary with a C00-contraction.