c2c12 muscle cells
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 266
Author(s):  
Seo-Young Kim ◽  
Ji-Hyeok Lee ◽  
Nalae Kang ◽  
Kil-Nam Kim ◽  
You-Jin Jeon

Skeletal muscle is an important tissue in energy metabolism and athletic performance. The use of effective synthetic supplements and drugs to promote muscle growth is limited by various side effects. Moreover, their use is prohibited by anti-doping agencies; hence, natural alternatives are needed. Therefore, we evaluated the muscle growth effect of substances that can act like synthetic supplements from edible marine algae. First, we isolated six marine algal polyphenols belonging to the phlorotannin class, namely dieckol (DK), 2,7′′-phloroglucinol-6,6′-bieckol (PHB), phlorofucofuroeckol A (PFFA), 6,6′-bieckol (6,6-BK), pyrogallol-phloroglucinol-6,6′-bieckol (PPB), and phloroglucinol (PG) from an edible brown alga, Ecklonia cava and evaluated their effects on C2C12 myoblasts proliferation and differentiation. Of the six phlorotannin isolates evaluated, DK and PHB induced the highest degree of C2C12 myoblast proliferation. In addition, DK and PHB regulates myogenesis by down-regulating the Smad signaling, a negative regulator, and up-regulating the insulin-like growth factor-1 (IGF-1) signaling, a positive regulator. Interestingly, DK and PHB bind strongly to myostatin, which is an inhibitor of myoblast proliferation, while also binding to IGF-1 receptors. Moreover, they bind to IGF-1 receptor. These results suggest that DK and PHB are potential natural muscle building supplements and could be a safer alternative to synthetic drugs.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1612
Author(s):  
Sun-Young Yoon ◽  
Jae Sik Yu ◽  
Ji Young Hwang ◽  
Hae Min So ◽  
Seung Oh Seo ◽  
...  

Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 μM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 124-124
Author(s):  
Xiaomin Zhang ◽  
Fathima Ameer ◽  
Jasmine Crane ◽  
Gohar Azhar ◽  
Jeanne Wei

Abstract The sirtuin (SIRT) proteins are a highly conserved family of NAD+-dependent deacetylases that regulate histones as well as non-histone proteins. Seven sirtuin genes have been identified (SIRT1 to SIRT7) in mammals. SIRT1, SIRT6, and SIRT7 are primarily localized in the nucleus. SIRT2 is localized mainly in the cytoplasm. SIRT3, SIRT4, and SIRT5 are often located in the mitochondria. Therefore, the sirtuin family proteins exert their diverse functions at various cellular locations and regulate metabolism, stress responses, growth and aging processes. The sirtuin proteins are often considered as nutrient sensors. This study assessed the expression of sirtuin genes in C2C12 muscle cells under glucose stress conditions at different time points. Expression of all seven sirtuins was confirmed by Real-Time PCR analysis. SIRT1 (24 h) and SIRT3 (6 h and 15 h) are highly expressed under low glucose (2.7 mM) and high glucose (25 mM) conditions, whereas SIRT2 and SIRT4, SIRT5, SIRT6 and SIRT7 expressions were either relatively lower or there was no significant change under glucose stress conditions. Our results indicate that SIRT1 and SIRT3 demonstrated the greatest fluctuation in response to glucose stress, whether high or low glucose. These findings will help elucidate the role of sirtuins in the regulation of cellular processes, including metabolism. It will also help to enhance our understanding of the roles of sirtuin genes in regulation of blood sugar fluctuation in normal persons and diabetic patients, as well as in elderly individuals, many of whom are insulin resistant and “prediabetic” or diabetic.


2020 ◽  
Vol 25 (5) ◽  
pp. 670-680
Author(s):  
Huong Giang Pham ◽  
Jong Pil Park ◽  
Jong Won Yun

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 359-359
Author(s):  
Avani gouru ◽  
Gordon Murdoch

Abstract Examining the effect of a physiological dose of the polyamine; spermine, on myogenic regulatory transcription factor expression. Spermine is a micronutrient derived from amino acids. It affects cell growth, proliferation, differentiation and gene regulation in many cell types. Polyamines have long been overlooked with respect to their biological effects on muscle growth. Myogenic regulatory factors (myoD, myf5) initiate, promote and regulate myogenesis. Supporting myogenic transcription factors transcription and by such enhancing muscle production in livestock, through nutrition may be possible with dietary spermine supplementation. We examined the effect of spermine (0.5mM) in undifferentiated c2c12 muscle cells at two time points (8hr and 16hr). Using TaqMan-MGB qRT-PCR we quantified mRNA for key myogenic regulatory factors in a minimum of three experiments each containing 3 technical replicates. We report a significant increase in myoD (P = 0.02) and myf5 (P = 0.05) mRNA at 8hr following spermine treatment as compared to controls (no spermine). After 16 hr exposure to spermine (0.5mM) treatment myoD (P = 0.01) remained significantly different from controls. Our results indicate that spermine supports myogenesis through expression of increased myogenic regulatory factors at early stages of myogenesis. These findings support the need to further test the hypothesis that spermine promotes increased muscle growth and ultimately may represent a dietary means to maximize muscle growth in livestock species.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2806 ◽  
Author(s):  
Eugene Chang ◽  
Yangha Kim

Excessive fat accumulation has been considered as a major contributing factor for muscle mitochondrial dysfunction and its associated metabolic complications. The purpose of present study is to investigate a role of vitamin D in muscle fat accumulation and mitochondrial changes. In differentiated C2C12 muscle cells, palmitic acid (PA) was pretreated, followed by incubation with 1,25-dihyroxyvitamin D (1,25(OH)2D) for 24 h. PA led to a significant increment of triglyceride (TG) levels with increased lipid peroxidation and cellular damage, which were reversed by 1,25(OH)2D. The supplementation of 1,25(OH)2D significantly enhanced PA-decreased mtDNA levels as well as mRNA levels involved in mitochondrial biogenesis such as nuclear respiratory factor 1 (NRF1), peroxisome proliferative activated receptor gamma coactivator-1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in C2C12 myotubes. Additionally, 1,25(OH)2D significantly increased ATP levels and gene expression related to mitochondrial function such as carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor α (PPARα), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD), medium-chain acyl-CoA dehydrogenase (MCAD), uncoupling protein 2 (UCP2), and UCP3 and the vitamin D pathway including 25-dihydroxyvitamin D3 24-hydroxylase (CYP24) and 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27) in PA-treated C2C12 myotubes. In addition to significant increment of sirtuin 1 (SIRT1) mRNA expression, increased activation of adenosine monophosphate-activated protein kinase (AMPK) and SIRT1 was found in 1,25(OH)2D-treated C2C12 muscle cells. Thus, we suggest that the observed protective effect of vitamin D on muscle fat accumulation and mitochondrial dysfunction in a positive manner via modulating AMPK/SIRT1 activation.


Sign in / Sign up

Export Citation Format

Share Document