auxiliary subunit
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 40)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Jennifer Morrison ◽  
Norah K. Altuwaijri ◽  
Kirsten Brønstad ◽  
Henriette Aksnes ◽  
Hessa S. Alsaif ◽  
...  

Abstract Purpose N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. In five individuals with overlapping phenotypes, we identified recessive homozygous missense variants in NAA20. Methods Two different NAA20 variants were identified in affected individuals in two consanguineous families by exome and genome sequencing. Biochemical studies were employed to assess the impact of the NAA20 variants on NatB complex formation and catalytic activity. Results Two homozygous variants, NAA20 p.Met54Val and p.Ala80Val (GenBank: NM_016100.4, c.160A>G and c.239C>T), segregated with affected individuals in two unrelated families presenting with developmental delay, intellectual disability, and microcephaly. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates. Thus, both NAA20 variants are impaired in their ability to perform cellular NatB-mediated N-terminal acetylation. Conclusion We present here a report of pathogenic NAA20 variants causing human disease and data supporting an essential role for NatB-mediated N-terminal acetylation in human development and physiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hai-qing Liu ◽  
Ya-jie Zou ◽  
Xiao-feng Li ◽  
Lei Wu ◽  
Guang-qin Guo

AbstractN-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James O. Meyer ◽  
Annette C. Dolphin

AbstractN-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and β subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.


2021 ◽  
Author(s):  
Koichi Nakajo ◽  
Go Kasuya

Tetrameric voltage-gated K+ channels have four identical voltage sensor domains, and they regulate channel gating. KCNQ1 (Kv7.1) is a voltage-gated K+ channel, and its auxiliary subunit KCNE proteins dramatically regulate its gating. For example, KCNE3 makes KCNQ1 a constitutively open channel by affecting the voltage sensor movement. However, how KCNE proteins regulate the voltage sensor domain is largely unknown. In this study, by utilizing the recently determined KCNQ1-KCNE3-calmodulin complex structure, we identified amino acid residues on KCNE3 facing the S1 segment of KCNQ1 that are required for constitutive activity. In addition, we found that the interaction of these amino acid residues of KCNE3 and the S1 segment affects the voltage sensor movement via M238 and V241 residues of the S4 segment. This triad interaction shifts the voltage sensor domain's equilibrium, leading to stabilization of the channel's open state.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding calcium voltage-gated channel auxiliary subunit beta 3, CACNB3, when comparing primary tumors of the breast to the tissue of origin, the normal breast. CACNB3 mRNA was present at significantly higher quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of CACNB3 in primary tumors of the breast was correlated with overall survival in patients with basal and luminal B subtype cancers, demonstrating a relationship between correlation of primary tumor expression with overall survival based on molecular subtype. CACNB3 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yalan Zhang ◽  
Luis Varela ◽  
Klara Szigeti-Buck ◽  
Adam Williams ◽  
Milan Stoiljkovic ◽  
...  

AbstractMutations in KCNC3, which encodes the Kv3.3 potassium channel, cause degeneration of the cerebellum, but exactly how the activity of an ion channel is linked to the survival of cerebellar neurons is not understood. Here, we report that Kv3.3 channels bind and stimulate Tank Binding Kinase 1 (TBK1), an enzyme that controls trafficking of membrane proteins into multivesicular bodies, and that this stimulation is greatly increased by a disease-causing Kv3.3 mutation. TBK1 activity is required for the binding of Kv3.3 to its auxiliary subunit Hax-1, which prevents channel inactivation with depolarization. Hax-1 is also an anti-apoptotic protein required for survival of cerebellar neurons. Overactivation of TBK1 by the mutant channel leads to the loss of Hax-1 by its accumulation in multivesicular bodies and lysosomes, and also stimulates exosome release from neurons. This process is coupled to activation of caspases and increased cell death. Our studies indicate that Kv3.3 channels are directly coupled to TBK1-dependent biochemical pathways that determine the trafficking of cellular constituents and neuronal survival.


2021 ◽  
Author(s):  
James O. Meyer ◽  
Annette C. Dolphin

AbstractN-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and β subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.Summary statementThe calcium channel auxiliary subunit α2δ-1 but not α2δ-3 participates in Rab11a-dependent recycling, which in turn influences the localisation and function of CaV2.2.


2021 ◽  
Author(s):  
Ian D. Coombs ◽  
Cécile Bats ◽  
Craig A. Sexton ◽  
Stuart G. Cull-Candy ◽  
Mark Farrant

AbstractCalcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits – including transmembrane AMPAR regulatory proteins, cornichons and GSG1L – that are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here we show that inclusion of the spider toxin analogue 1-naphthylacetyl spermine (NASPM) in the intracellular recording solution results in complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, blocks all outward synaptic current. Thus, our results identify an unambiguous functional measure, sensitive solely to changes in CP-AMPAR prevalence.


Cell Reports ◽  
2021 ◽  
Vol 34 (7) ◽  
pp. 108732
Author(s):  
Aichurok Kamalova ◽  
Kensuke Futai ◽  
Eric Delpire ◽  
Terunaga Nakagawa

Sign in / Sign up

Export Citation Format

Share Document