lithofacies classification
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 1)

Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 4) ◽  
Author(s):  
Jie Ren ◽  
Yuan Wang ◽  
Di Feng ◽  
Jiakun Gong

Abstract Deep saline aquifers have strong heterogeneity under natural conditions, which affects the migration of carbon dioxide (CO2) injection into the reservoir. How to characterize the heterogeneity of rock mass is of great significance to research the CO2 migration law during CO2 storage. A method is proposed to construct different heterogeneous models from the point of view of whether the amount of data is sufficient or not, the wholly heterogeneous model with sufficient data, the deterministic multifacies heterogeneous model which is simplified by lithofacies classification, and the random multifacies heterogeneous model which is derived from known formation based on transfer probability theory are established, respectively. Numerical simulation is carried out to study the migration law of CO2 injected into the above three heterogeneous models. The results show that the migration of CO2 in heterogeneous deep saline aquifers shows a significant fingering flow phenomenon and reflect the physical process in CO2 storage; the migration law of CO2 in the deterministic multifacies heterogeneous model is similar to that in the wholly heterogeneous model and indicates that the numerical simulation of simplifying the wholly heterogeneous structure to the lithofacies classification structure is suitable for simulating the CO2 storage process. The random multifacies heterogeneous model based on the transfer probability theory accords with the development law of sedimentary formation and can be used to evaluate the CO2 migration law in unknown heterogeneous formations. On the other hand, by comparing the dry-out effect of CO2 in different heterogeneous models, it is pointed out that the multifacies characterization method will weaken the influence due to the local homogenization of the model in small-scale research; it is necessary to refine the grid and subdivide the lithofacies of the local key area elements to eliminate the research error. The research results provide feasible references and suggestions for the heterogeneous modeling of the missing data area and the simplification of large-scale heterogeneous models.


2021 ◽  
pp. 1-50
Author(s):  
Zongjun Wang ◽  
Nan Tian ◽  
Hongchao Dong

The oil sand reservoirs in the Athabasca region of Canada are estuarine deposits affected by tides. The strata are inclined and the interlayers are well-developed. Accurate spatial characterization of reservoirs and interlayers is the key for efficient oil-sand development. In this paper, we use pre-stack Bayesian lithofacies classification technology to predict the spatial distribution characteristics of reservoirs and interlayers of oil-sand reservoirs. We first use log lithofacies data as a label, select lithofacies sensitive elastic parameters to make a lithofacies classification probability distribution cross-plot, and then project the lithofacies-sensitive elastic parameter volumes into the lithofacies classification probability distribution cross-plot. Finally, we predict the spatial probability distribution of different lithofacies. Probabilistic characterization can enhance the recognition of transitional lithology and thin layers in the inversion results, reduce the uncertainty in the prediction of reservoirs and interlayers, and significantly improve the prediction accuracy of reservoirs and interlayers. The field application results in the Kinosis study area show that the probability volume predicted by this technology can distinguish interlayers greater than 1 meter thick and identify interlayers greater than 2 meters thick, which meets the technical requirements of oil-sand SAGD (Steam Assisted Gravity Drainage) development.


Author(s):  
Timothy Scott Williams ◽  
Shuvajit Bhattacharya ◽  
Liaosha Song ◽  
Agrawal Vikas ◽  
Sharma Shikha

2021 ◽  
Vol 54 (2B) ◽  
pp. 65-75
Author(s):  
Mohammed Albuslimi

Identifying rock facies from petrophysical logs is a crucial step in the evaluation and characterization of hydrocarbon reservoirs. The rock facies can be obtained either from core analysis (lithofacies) or from well logging data (electrofacies). In this research, two advanced machine learning approaches were adopted for electrofacies identification and for lithofacies classification, both given the well-logging interpretations from a well in the upper shale member in Luhais Oil Field, southern Iraq. Specifically, the K-mean partitioning analysis and Logistic Boosting (Logit Boost) were conducted for electrofacies characterization and lithofacies classification, respectively. The dataset includes the routine core analysis of core porosity, core permeability, and measured discrete lithofacies along with the well-logging interpretations include (shale volume, water saturation and effective porosity) given the entire reservoir interval. The K-Mean clustering technique demonstrated good matching between the vertical sequence of identified electrofacies and the observed lithofacies from core description as attained 89.92% total correct percent from the confusion matrix table. The Logit Boost showed excellent matching between the recognized lithofacies from the core description and the predicted lithofacies through attained 98.26% total correct classification rate index from the confusion matrix table. The high accuracy of the Logit Boost algorithm comes from taking into account the non-linearity between the lithofacies and petrophysical properties in the classification process. The high degree of lithofacies classification by Logit Boost in this research can be considered in a similar procedure at all sandstone reservoirs to improve the reservoir characterization. The complete facies identification and classification were implemented with the programming language R, the powerful open-source statistical computing language.


2021 ◽  
Author(s):  
Mohammed A. Abbas ◽  
Watheq J. Al-Mudhafar

Abstract Estimating rock facies from petrophysical logs in non-cored wells in complex carbonates represents a crucial task for improving reservoir characterization and field development. Thus, it most essential to identify the lithofacies that discriminate the reservoir intervals based on their flow and storage capacity. In this paper, an innovative procedure is adopted for lithofacies classification using data-driven machine learning in a well from the Mishrif carbonate reservoir in the giant Majnoon oil field, Southern Iraq. The Random Forest method was adopted for lithofacies classification using well logging data in a cored well to predict their distribution in other non-cored wells. Furthermore, three advanced statistical algorithms: Logistic Boosting Regression, Bagging Multivariate Adaptive Regression Spline, and Generalized Boosting Modeling were implemented and compared to the Random Forest approach to attain the most realistic lithofacies prediction. The dataset includes the measured discrete lithofacies distribution and the original log curves of caliper, gamma ray, neutron porosity, bulk density, sonic, deep and shallow resistivity, all available over the entire reservoir interval. Prior to applying the four classification algorithms, a random subsampling cross-validation was conducted on the dataset to produce training and testing subsets for modeling and prediction, respectively. After predicting the discrete lithofacies distribution, the Confusion Table and the Correct Classification Rate Index (CCI) were employed as further criteria to analyze and compare the effectiveness of the four classification algorithms. The results of this study revealed that Random Forest was more accurate in lithofacies classification than other techniques. It led to excellent matching between the observed and predicted discrete lithofacies through attaining 100% of CCI based on the training subset and 96.67 % of the CCI for the validating subset. Further validation of the resulting facies model was conducted by comparing each of the predicted discrete lithofacies with the available ranges of porosity and permeability obtained from the NMR log. We observed that rudist-dominated lithofacies correlates to rock with higher porosity and permeability. In contrast, the argillaceous lithofacies correlates to rocks with lower porosity and permeability. Additionally, these high-and low-ranges of permeability were later compared with the oil rate obtained from the PLT log data. It was identified that the high-and low-ranges of permeability correlate well to the high- and low-oil rate logs, respectively. In conclusion, the high quality estimation of lithofacies in non-cored intervals and wells is a crucial reservoir characterization task in order to obtain meaningful permeability-porosity relationships and capture realistic reservoir heterogeneity. The application of machine learning techniques drives down costs, provides for time-savings, and allows for uncertainty mitigation in lithofacies classification and prediction. The entire workflow was done through R, an open-source statistical computing language. It can easily be applied to other reservoirs to attain for them a similar improved overall reservoir characterization.


2021 ◽  
Vol 10 (1) ◽  
pp. 9-17
Author(s):  
Sudarmaji Saroji ◽  
Ekrar Winata ◽  
Putra Pratama Wahyu Hidayat ◽  
Suryo Prakoso ◽  
Firman Herdiansyah

Lithofacies classification is a process to identify rock lithology by indirect measurements. Usually, the classification is processed manually by an experienced geoscientist. This research presents an automated lithofacies classification using a machine learning method to increase computational power in shortening the lithofacies classification process's time consumption. The support vector machine (SVM) algorithm has been applied successfully to the Damar field, Indonesia. The machine learning input is various well-log data sets, e.g., gamma-ray, density, resistivity, neutron porosity, and effective porosity. Machine learning can classify seven lithofacies and depositional environments, including channel, bar sand, beach sand, carbonate, volcanic, and shale. The classification accuracy in the verification phase with trained lithofacies class data reached more than 90%, while the accuracy in the validation phase with beyond trained data reached 65%. The classified lithofacies then can be used as the input for describing lateral and vertical rock distribution patterns.


Sign in / Sign up

Export Citation Format

Share Document