weak ergodicity breaking
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 98
Author(s):  
Jakub Spiechowicz ◽  
Peter Hänggi ◽  
Jerzy Łuczka

Multistability, i.e., the coexistence of several attractors for a given set of system parameters, is one of the most important phenomena occurring in dynamical systems. We consider it in the velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core of statistical mechanics. The latter implies that a single trajectory of the system is representative for the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten. The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity multistability depends on the starting position and velocity of the particle. While for non-zero temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and high temperatures, the multistability is robust with respect to the choice of the starting position and velocity of the particle.


2020 ◽  
Vol 102 (22) ◽  
Author(s):  
H. Yarloo ◽  
A. Emami Kopaei ◽  
A. Langari

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 339 ◽  
Author(s):  
Federica Maria Surace ◽  
Giuliano Giudici ◽  
Marcello Dalmonte

We study the spectral properties of D-dimensional N=2 supersymmetric lattice models. We find systematic departures from the eigenstate thermalization hypothesis (ETH) in the form of a degenerate set of ETH-violating supersymmetric (SUSY) doublets, also referred to as many-body scars, that we construct analytically. These states are stable against arbitrary SUSY-preserving perturbations, including inhomogeneous couplings. For the specific case of two-leg ladders, we provide extensive numerical evidence that shows how those states are the only ones violating the ETH, and discuss their robustness to SUSY-violating perturbations. Our work suggests a generic mechanism to stabilize quantum many-body scars in lattice models in arbitrary dimensions.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1642
Author(s):  
Robert Englman

Whereas ergodic theories relate to limiting cases of infinite thermal reservoirs and infinitely long times, some ergodicity tendencies may appear also for finite reservoirs and time durations. These tendencies are here explored and found to exist, but only for extremely long times and very soft ergodic criteria. “Weak ergodicity breaking” is obviated by a judicious time-weighting, as found in a previous work [Found. Phys. (2015) 45: 673–690]. The treatment is based on an N-oscillator (classical) and an N-spin (quantal) model. The showing of ergodicity is facilitated by pictorial presentations.


2020 ◽  
Vol 117 (30) ◽  
pp. 17522-17527
Author(s):  
Massimo Bernaschi ◽  
Alain Billoire ◽  
Andrea Maiorano ◽  
Giorgio Parisi ◽  
Federico Ricci-Tersenghi

Out-of-equilibrium relaxation processes show aging if they become slower as time passes. Aging processes are ubiquitous and play a fundamental role in the physics of glasses and spin glasses and in other applications (e.g., in algorithms minimizing complex cost/loss functions). The theory of aging in the out-of-equilibrium dynamics of mean-field spin glass models has achieved a fundamental role, thanks to the asymptotic analytic solution found by Cugliandolo and Kurchan. However, this solution is based on assumptions (e.g., the weak ergodicity breaking hypothesis) which have never been put under a strong test until now. In the present work, we present the results of an extraordinary large set of numerical simulations of the prototypical mean-field spin glass models, namely the Sherrington–Kirkpatrick and the Viana–Bray models. Thanks to a very intensive use of graphics processing units (GPUs), we have been able to run the latter model for more than264spin updates and thus safely extrapolate the numerical data both in the thermodynamical limit and in the large times limit. The measurements of the two-times correlation functions in isothermal aging after a quench from a random initial configuration to a temperatureT<Tcprovides clear evidence that, at large times, such correlations do not decay to zero as expected by assuming weak ergodicity breaking. We conclude that strong ergodicity breaking takes place in mean-field spin glasses aging dynamics which, asymptotically, takes place in a confined configurational space. Theoretical models for the aging dynamics need to be revised accordingly.


2018 ◽  
Vol 14 (7) ◽  
pp. 745-749 ◽  
Author(s):  
C. J. Turner ◽  
A. A. Michailidis ◽  
D. A. Abanin ◽  
M. Serbyn ◽  
Z. Papić

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Long Shi ◽  
Aiguo Xiao

We consider a particular type of continuous time random walk where the jump lengths between subsequent waiting times are correlated. In a continuum limit, the process can be defined by an integrated Brownian motion subordinated by an inverse α-stable subordinator. We compute the mean square displacement of the proposed process and show that the process exhibits subdiffusion when 0<α<1/3, normal diffusion when α=1/3, and superdiffusion when 1/3<α<1. The time-averaged mean square displacement is also employed to show weak ergodicity breaking occurring in the proposed process. An extension to the fractional case is also considered.


Sign in / Sign up

Export Citation Format

Share Document