cerebral inflammation
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 7 (2) ◽  

There is a direct relationship between COVID-19 and smoking. This relationship has detrimental consequences for smoking and COVID-19 on body physiology. Smoking causes disc herniation, lungs diseases, heart illness, lipid profile changes, muscle protein synthesis declines, head, neck, and gastric cancers, cerebral inflammation, weight loss and obesity. The smoking habit of pregnant women leads to miscarriage, poor foetal growth, and low lipid and protein levels in breast milk. In males, it also reduces semen ejaculation and seminal vesicle volume. The treatment is based on quitting the smoking. Preventive measures such as a healthy diet and regular exercise can help to mitigate the negative consequences of smoking. In addition, smoking has been recognised as a major factor in COVID-19 transmission. Tobacco smokers are at increased risk of serious COVID-19 infection due to poor lung function, cross-infection, and vulnerable hygiene behaviors. People who have smoked in the past are thought to be more susceptible than non-smokers to have more severe COVID-19 illness symptoms. COVID-19 is more common among smokers than nonsmokers. Current smokers are five times more likely to have influenza infection than non-smokers. Smoking has been identified as one of the risk factors linked to infection and death.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1784
Author(s):  
Gwo-Ching Sun ◽  
Jockey Tse ◽  
Yung-Ho Hsu ◽  
Chiu-Yi Ho ◽  
Ching-Jiunn Tseng ◽  
...  

Opioids, a kind of peptide hormone involved in the development of hypertension, cause systemic and cerebral inflammation, and affects regions of the brain that are important for blood pressure (BP) control. A cause-and-effect relationship exists between hypertension and inflammation; however, the role of blood pressure in cerebral inflammation is not clear. Evidence showed that AT1R and μOR heterodimers’ formation in the NTS might lead to the progression of hypertension. In this study, we investigated the formation of the μOR/AT1R heterodimer, determined its correlation with μORs level in the NTS, and explored the role of TLR4-dependent inflammation in the development of hypertension. Results showed that Ang II increased superoxide and Iba-1 (microgliosis marker: ionized calcium-binding adaptor molecule (1) levels in the NTS of spontaneously hypertensive rats (SHRs). The AT1R II inhibitor, losartan, significantly decreased BP and abolished superoxide, Iba-1, TLR4 expression induced by Ang II. Furthermore, losartan significantly increased nNsOSS1416 phosphorylation. Administration of a μOR agonist or antagonist in the NTS of WKY and SHRs increased endogenous μ-opioids, triggered the formation of μOR/AT1R heterodimers and the TLR4-dependent inflammatory pathway, and attenuated the effect of depressor nitric oxide (NO). These results imply an important link between neurotoxicity and superoxides wherein abnormal increases in NTS endogenous μ-opioids promote the interaction between Ang II and μOR, the binding of Ang II to AT1R, and the activation of microglia. In addition, the interaction between Ang II and μOR enhanced the formation of the AT1R and μOR heterodimers, and inactivated nNOS-derived NO, leading to the development of progressive hypertension.


2021 ◽  
Author(s):  
Ralph Timaru-Kast ◽  
Shila P. Coronel-Castello ◽  
Tobias Krämer ◽  
André V. Hugonnet ◽  
Michael K.E. Schäfer ◽  
...  

Abstract Background: Cerebral inflammation with invasion of neutrophils and lymphocytes is an important factor in the process of secondary brain damage expansion after traumatic brain injury (TBI). Depletion of neutrophils in mice has been shown to reduce neurologic impairment after TBI. The intrinsic cerebral renin-angiotensin system is an important mediator of cerebral inflammation, as inhibition of the angiotensin II receptor type 1 (AT1) with candesartan improves neurologic recovery, and reduces secondary brain damage and cerebral neutrophil invasion after TBI. The present study was therefore designed to determine the role of immune cells in AT1 inhibition-mediated neuroprotection after TBI. Methods: In study A we assessed the effect of neutrophil depletion in mice after TBI. In study B we investigated the impact of RAG1 deficiency (RAG1-/-; mice without mature B- and T-lymphocytes) after TBI. In study C we investigated the role of neutrophils in candesartan mediated protection after TBI in wild-type mice with and without neutrophil depletion. In study D we examined the role of lymphocytes in AT1 inhibition mediated neuroprotection after TBI in RAG1-/-.Results: Neutropenic and RAG1-/- mice showed reduced brain damage compared to control groups. In control antibody treated wild type mice AT1 inhibition reduced lesion volumes and inflammation compared to vehicle, while in neutropenic mice, candesartan had no effect. In RAG1-/- mice AT1 inhibition resulted in reduction of brain damage and neuroinflammation compared to vehicle group. Conclusion: The present results demonstrate, that reduction of neutrophils and of lymphocytes as well as AT1 inhibition in wild type and RAG1-/- mice reduce brain damage and inflammation after TBI. However, AT1 inhibition was neuroprotective in RAG1-/- mice, but not in neutropenic mice. Therefore, the results indicate that AT1 inhibition mediated neuroprotection may be exerted by anti-inflammatory effects on neutrophils, with a subsequent reduction of neutrophil invasion.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jens Kamuf ◽  
Andreas Garcia Bardon ◽  
Alexander Ziebart ◽  
Robert Ruemmler ◽  
Johannes Schwab ◽  
...  

Abstract Background Many patients with acute respiratory distress syndrome (ARDS) suffer from cognitive impairment after hospital discharge. Different mechanisms have been implicated as potential causes for this impairment, inter alia cerebral inflammation. A class of drugs with antioxidant and anti-inflammatory properties are β-HMG-CoA-reductase inhibitors (“statins”). We hypothesized that treatment with rosuvastatin attenuates cerebral cytokine mRNA expression and nitro-oxidative stress in an animal model of acute lung injury. Methods After approval of the institutional and state animal care committee, we performed this prospective randomized controlled animal study in accordance with the international guidelines for the care and use of laboratory animals. Thirty-two healthy male pigs were randomized to one of four groups: lung injury by central venous injection of oleic acid (n = 8), statin treatment before and directly after lung injury (n = 8), statin treatment after lung injury (n = 8), or ventilation-only controls (n = 8). About 18 h after lung injury and standardized treatment, the animals were euthanised, and the brains and lungs were collected for further examinations. We determined histologic lung injury and cerebral and pulmonal cytokine and 3-nitrotyrosine production. Results We found a significant increase in hippocampal IL-6 mRNA after lung injury (p < 0.05). Treatment with rosuvastatin before and after induction of lung injury led to a significant reduction of hippocampal IL-6 mRNA (p < 0.05). Cerebral 3-nitrotyrosine was significantly higher in lung-injured animals compared with all other groups (p < 0.05 vs. animals treated with rosuvastatin after lung injury induction; p < 0.001 vs. all other groups). 3-Nitrotyrosine was also increased in the lungs of the lung-injured pigs compared to all other groups (p < 0.05 each). Conclusions Our findings highlight cerebral cytokine production and nitro-oxidative stress within the first day after induction of lung injury. The treatment with rosuvastatin reduced IL-6 mRNA and 3-nitrotyrosine concentration in the brains of the animals. In earlier trials, statin treatment did not reduce mortality in ARDS patients but seemed to improve quality of life in ARDS survivors. Whether this is attributable to better cognitive function because of reduced nitro-oxidative stress and inflammation remains to be elucidated.


Author(s):  
Sibylle Frase ◽  
Matti Steimer ◽  
Lisa Selzner ◽  
Sandra Kaiser ◽  
Niels Alexander Foit ◽  
...  

Abstract Background Red blood cell-induced cerebral inflammation and toxicity has been shown to be attenuated by induction of the heme-catalyzing enzyme, hemoxygenase-1 (HO-1), in animal models of subarachnoid hemorrhage (SAH). Although inflammatory mechanisms leading to secondary neuronal injury in SAH are becoming increasingly well understood, markers of cerebral inflammation have so far not been implemented in clinical prediction models of SAH. Methods In this biomarker observational study, HO-1 messenger ribonucleic acid (mRNA) expression levels were determined in cerebrospinal fluid (CSF) and blood of 66 patients with aneurysmal SAH on days 1, 7, and 14 after the SAH event. HO-1 mRNA expression was determined via real time polymerase chain reaction (PCR), and relative expression changes were quantified in comparison with expression levels in nonhemorrhagic control CSF. Subarachnoid blood burden, as well as presence of vasospasm and delayed cerebral ischemia (DCI), were recorded. Short and long-term clinical outcomes were assessed using the Modified Rankin Scale at discharge and 1 year after the SAH event. Results CSF HO-1 expression levels showed a significant increase over the 14-day observation period (p < 0.001, F = 22.53) and correlated with intracranial hematoma burden (ρ = 0.349, p = 0.025). In multivariate analyses, CSF HO-1 expression levels did not reach significance as independent predictors of outcome. Vasospasm on computed tomographic angiography was associated with lower CSF HO-1 expression levels on day 7 after SAH (n = 53, p = 0.010), whereas patients with DCI showed higher CSF HO-1 expression levels on day 14 after SAH (n = 21, p = 0.009). Conclusions HO-1 expression in CSF in patients with SAH follows a distinct temporal induction pattern and is dependent on intracranial hematoma burden. CSF HO-1 expression was unable to predict functional outcome. Associations of early low HO-1 expression with vasospasm and late elevated HO-1 expression with DCI may point to detrimental effects of late HO-1 induction, warranting the need for further investigation in a larger study population.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Yingyu Zhou ◽  
Wanyi Qiu ◽  
Yimei Wang ◽  
Rong Wang ◽  
Tomohiro Takano ◽  
...  

As a kind of metabolically triggered inflammation, obesity influences the interplay between the central nervous system and the enteral environment. The present study showed that β-elemene, which is contained in various plant substances, had effects on recovering the changes in metabolites occurring in high-fat diet (HFD)-induced obese C57BL/6 male mice brains, especially in the prefrontal cortex (PFC) and hippocampus (HIP). β-elemene also partially reversed HFD-induced changes in the composition and contents of mouse gut bacteria. Furthermore, we evaluated the interaction between cerebral metabolites and intestinal microbiota via Pearson correlations. The prediction results suggested that Firmicutes were possibly controlled by neuron integrity, cerebral inflammation, and neurotransmitters, and Bacteroidetes in mouse intestines might be related to cerebral aerobic respiration and the glucose cycle. Such results also implied that Actinobacteria probably affected cerebral energy metabolism. These findings suggested that β-elemene has regulatory effects on the imbalanced microbiota-gut-brain axis caused by obesity and, therefore, would contribute to the future study in on the interplay between cerebral metabolites from different brain regions and the intestinal microbiota of mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sebastian B. Lucas ◽  
Kum T. Wong ◽  
Sam Nightingale ◽  
Robert F. Miller

HIV-associated CD8-encephalitis (HIV-CD8E) is a severe inflammatory disorder dominated by infiltration of the brain by CD8+ T-lymphocytes. It occurs in people with HIV, typically when the virus is apparently well-controlled by antiretroviral treatment (ART). HIV-CD8E presents with symptoms and signs related to marked cerebral inflammation and swelling, and can lead to coma and death unless treated promptly with corticosteroids. Risk events such as intercurrent infection, antiretroviral therapy interruption, immune reconstitution inflammatory syndrome (IRIS) after starting ART, and concomitant associations such as cerebrospinal fluid (CSF) HIV viral escape have been identified, but the pathogenesis of the disorder is not known. We present the largest case series of HIV-CD8E to date (n = 23), representing histopathologically confirmed cases in the UK. We also summarize the global literature representing all previously published cases with histopathological confirmation (n = 30). A new variant of HIV-CD8E is described, occurring on a background of HIV encephalitis (HIVE).Together these series, totalling 53 patients, provide new insights. CSF HIV viral escape was a frequent finding in HIV-CD8E occurring in 68% of those with CSF available and tested; ART interruption and IRIS were important, both occurring in 27%. Black ethnicity appeared to be a key risk factor; all but two UK cases were African, as were the majority of the previously published cases in which ethnicity was stated. We discuss potential pathogenic mechanisms, but there is no unifying explanation over all the HIV-CD8E scenarios.


2020 ◽  
Vol 14 ◽  
Author(s):  
Ying Han ◽  
Liping Ding ◽  
Xiang Cheng ◽  
Ming Zhao ◽  
Tong Zhao ◽  
...  

The importance of hypoxia in the pathophysiology of inflammatory bowel disease (IBD) is increasingly being realized; also, hypoxia seems to be an important accelerator of brain inflammation, as has been reported by our group and others. IBD is a chronic intestinal disorder that leads to the development of inflammation, which is related to brain dysfunction. However, no studies have reported whether hypoxia is associated with IBD-induced neuroinflammation. Therefore, the objective of the present study was to determine whether hypoxia augments cerebral inflammation in a DSS-induced colitis mouse model. The mouse model was developed using 3% DSS for five days combined with exposure to hypoxic conditions (6,000 m) for two days. Mice were randomly divided into four groups: control group, DSS group, hypoxia group, and DSS plus hypoxia group. The results demonstrated that DSS combined with hypoxia resulted in up-regulation of colonic and plasmatic proinflammatory cytokines. Meanwhile, DSS plus hypoxia increased expression of Iba1, which is a marker of activated microglia, accompanied by increased expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the brain. Moreover, the expression of tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-5, was markedly downregulated. The current study provides new insight into how hypoxia exposure induces excessive inflammatory responses andpathophysiological consequences in the brain in a DSS-induced colitis model.


Author(s):  
Samaneh Borooni ◽  
Fahimeh Nourbakhsh ◽  
Elahe Tajbakhsh ◽  
Parisa Behshood

Background and Aims: The therapeutic effects of the olibanum, the resin of Boswellia serrata (B. serrata) from the Burseraceae family in inflammatory disease have been reported. There are more than 200 active ingredients in this resin, including Boswellic acid. It is proposed that aqueous extract of B. serrata can improve memory impairment induced by cerebral inflammation result in the administration of lipopolysaccharide (LPS). Materials and Methods: In this study, after the treatment of rats with LPS, brain toxicity induction was performed, and finally, the behavioral tests were evaluated. Following cerebral inflammation induction and treatment, behavioral performance biochemistry tests and molecular methods were assessed in all groups. Results: LPS administration increased the duration and distance to find the platform in the Morris water maze test compared to the control group in 5 days (p<0.05 to p<0.001). Furthermore, LPS reduced the peripheral, central, and total locomotion compared to the control group (p< 0.001) in the open field test. Pretreatment with both doses of aqueous extract of B. serrata enhanced performances of the rats in Morris water maze (p<0.05 to p<0.01) and open field test (p<0.01 to p<0.001). LPS also increased hippocampus Interleukin-6, malondialdehyde levels (p<0.001). Conclusion: Aqueous extract of B. serrata can be a useful drug in memory impairment caused by LPS-induced inflammation.


Sign in / Sign up

Export Citation Format

Share Document