anthrax lethal toxin
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 12)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Vol 9 (6) ◽  
pp. 1204
Author(s):  
Kenneth Smith ◽  
Lori Garman ◽  
Kathleen Norris ◽  
Jennifer Muther ◽  
Angie Duke ◽  
...  

Anthrax vaccine adsorbed (AVA) is a significant line of defense against bioterrorist attack from Bacillus anthracis spores. However, in a subset of individuals, this vaccine may produce a suboptimal quantity of anti-protective antigen (PA), antibodies that are poorly neutralizing, and/or antibody titers that wane over time, necessitating annual boosters. To study individuals with such poor responses, we examine the properties of anti-PA in a subset of vaccinated individuals that make significant quantities of antibody but are still unable to neutralize toxin. In this cohort, characterized by poorly neutralizing antibody, we find that increased IgG4 to IgG1 subclass ratios, low antibody avidity, and insufficient antibody targeting domain 4 associate with improper neutralization. Thus, future vaccines and vaccination schedules should be formulated to improve these deficiencies.


2021 ◽  
Author(s):  
Carly Merritt ◽  
Elizabeth M. Chun ◽  
Rasem J. Fattah ◽  
Mahtab Moayeri ◽  
Dennis Paliga ◽  
...  

SUMMARYThe virulence of Bacillus anthracis is linked to the secretion of anthrax lethal toxin and anthrax edema toxin. These binary toxins consist of a common cell-binding moiety, protective antigen (PA), and the enzymatic moieties, lethal factor (LF) and edema factor (EF). PA binds either of two specific cell surface receptors, capillary morphogenesis protein-2 (CMG-2) or tumor endothelial marker-8 (TEM-8), which triggers the binding, endocytosis, and cytoplasmic translocation of LF and EF. The cellular distribution of functional TEM-8 and CMG-2 receptors during anthrax toxin intoxication in animals is not fully elucidated. Herein, we describe a novel assay to image anthrax toxin intoxication in live animals, and we use the assay to visualize TEM-8- and CMG-2-dependent intoxication. Specifically, we generated a chimeric protein consisting of the N-terminal domain of LF fused to a nuclear localization signal-tagged Cre recombinase (LFn-NLS-Cre). When PA and LFn-NLS-Cre were co-administered to transgenic mice that ubiquitously express a red fluorescent protein in the absence of Cre activity and a green fluorescent protein in the presence of Cre activity, anthrax toxin intoxication could be visualized at single-cell resolution by confocal microscopy. By using this assay, we show that CMG-2 is critical for intoxication in the liver and heart, whereas TEM-8 is required for full intoxication in the kidney and spleen. Other tissues examined were largely unaffected by single deficiences in either receptor, suggesting extensive overlap in TEM-8 and CMG-2 expression. The novel assay will be useful for basic and clinical/translational studies of Bacillus anthracis infection and for identifying on- and off-targets for reengineered toxin variants in the clinical development of cancer treatments.BackgroundAssays for imaging of anthrax toxin intoxication in animals are not available.ResultsAnthrax toxin-Cre fusions combined with fluorescent Cre reporter mice enabled imaging of anthrax toxin intoxication in animals.ConclusionShared and distinct functions of toxin receptors in cellular entry were uncovered. Significance. A simple and versatile assay for anthrax toxin intoxication is described.


2020 ◽  
Vol 16 (8) ◽  
pp. e1008530
Author(s):  
Claudia Antoni ◽  
Dennis Quentin ◽  
Alexander E. Lang ◽  
Klaus Aktories ◽  
Christos Gatsogiannis ◽  
...  

2020 ◽  
Vol 85 ◽  
pp. 106664
Author(s):  
Jinling Wang ◽  
Daowei Yang ◽  
Xizi Shen ◽  
Junsheng Wang ◽  
Xiaomei Liu ◽  
...  

2020 ◽  
Vol 108 (3) ◽  
pp. 773-786 ◽  
Author(s):  
Allison J. Greaney ◽  
Makayla K. Portley ◽  
Danielle O'Mard ◽  
Devorah Crown ◽  
Nolan K. Maier ◽  
...  

Author(s):  
Claudia Antoni ◽  
Dennis Quentin ◽  
Alexander E. Lang ◽  
Klaus Aktories ◽  
Christos Gatsogiannis ◽  
...  

AbstractAnthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the order of LF binding determines which factor is translocated first.


2020 ◽  
Vol 117 (8) ◽  
pp. 4078-4087 ◽  
Author(s):  
Weiming Ouyang ◽  
Pengfei Guo ◽  
Kazuyo Takeda ◽  
Qiong Fu ◽  
Hui Fang ◽  
...  

Anthrax lethal toxin (LT) is a protease virulence factor produced by Bacillus anthracis that is required for its pathogenicity. LT treatment causes a rapid degradation of c-Jun protein that follows inactivation of the MEK1/2-Erk1/2 signaling pathway. Here we identify COP1 as the ubiquitin E3 ligase that is essential for LT-induced c-Jun degradation. COP1 knockdown using siRNA prevents degradation of c-Jun, ETV4, and ETV5 in cells treated with either LT or the MEK1/2 inhibitor, U0126. Immunofluorescence staining reveals that COP1 preferentially localizes to the nuclear envelope, but it is released from the nuclear envelope into the nucleoplasm following Erk1/2 inactivation. At baseline, COP1 attaches to the nuclear envelope via interaction with translocated promoter region (TPR), a component of the nuclear pore complex. Disruption of this COP1–TPR interaction, through Erk1/2 inactivation or TPR knockdown, leads to rapid COP1 release from the nuclear envelope into the nucleoplasm where it degrades COP1 substrates. COP1-mediated degradation of c-Jun protein, combined with LT-mediated blockade of the JNK1/2 signaling pathway, inhibits cellular proliferation. This effect on proliferation is reversed by COP1 knockdown and ectopic expression of an LT-resistant MKK7-4 fusion protein. Taken together, this study reveals that the nuclear envelope acts as a reservoir, maintaining COP1 poised for action. Upon Erk1/2 inactivation, COP1 is rapidly released from the nuclear envelope, promoting the degradation of its nuclear substrates, including c-Jun, a critical transcription factor that promotes cellular proliferation. This regulation allows mammalian cells to respond rapidly to changes in extracellular cues and mediates pathogenic mechanisms in disease states.


2019 ◽  
Vol 38 (13) ◽  
Author(s):  
Hao Xu ◽  
Jianjin Shi ◽  
Hang Gao ◽  
Ying Liu ◽  
Zhenxiao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document