energy filtering
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 47)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Martin Obr ◽  
Wim JH Hagen ◽  
Robert A Dick ◽  
Lingbo Yu ◽  
Abhay Kotecha ◽  
...  

The potential of energy filtering and direct electron detection for cryo-electron microscopy (cryo- EM) image processing has been well documented for single particle analysis (SPA). Here, we assess the performance of recently introduced hardware for cryo-electron tomography (cryo-ET) and subtomogram averaging (STA), an increasingly popular structural determination method for complex 3D specimens. We acquired cryo-ET datasets of EIAV virus-like particles (VLPs) on two contemporary cryo-EM systems equipped with different energy filters and direct electron detectors (DED), specifically a Krios G4, equipped with a cold field emission gun (CFEG), Thermo Fisher Scientific Selectris X energy filter, and a Falcon 4 DED; and a Krios G3i, with a Schottky field emission gun (XFEG), a Gatan Bioquantum energy filter, and a K3 DED. We performed constrained cross-correlation-based STA on equally sized datasets acquired on the respective systems. The resulting EIAV CA hexamer reconstructions show that both systems perform comparably in the 4-6 Angstrom resolution range. In addition, by employing a recently introduced multiparticle refinement approach, we obtained a reconstruction of the EIAV CA hexamer at 2.9 Angstrom. Our results demonstrate the potential of the new generation of energy filters and DEDs for STA, and the effects of using different processing pipelines on their STA outcomes.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 148
Author(s):  
Hong-Ju Ahn ◽  
Seil Kim ◽  
Kwang Ho Kim ◽  
Joo-Yul Lee

In this study, we prepared Te nanorod arrays via a galvanic displacement reaction (GDR) on a Si wafer, and their composite with poly(3,4-ethylenedioxythiophene) (PEDOT) were successfully synthesized by electrochemical polymerization with lithium perchlorate (LiClO4) as a counter ion. The thermoelectric performance of the composite film was optimized by adjusting the polymerization time. As a result, a maximum power factor (PF) of 235 µW/mK2 was obtained from a PEDOT/Te composite film electrochemically polymerized for 15 s at room temperature, which was 11.7 times higher than that of the PEDOT film, corresponding to a Seebeck coefficient (S) of 290 µV/K and electrical conductivity (σ) of 28 S/cm. This outstanding PF was due to the enhanced interface interaction and carrier energy filtering effect at the interfacial potential barrier between the PEDOT and Te nanorods. This study demonstrates that the combination of an inorganic Te nanorod array with electrodeposited PEDOT is a promising strategy for developing high-performance thermoelectric materials.


Nano Energy ◽  
2021 ◽  
pp. 106706
Author(s):  
Hang-Tian Liu ◽  
Qiang Sun ◽  
Yan Zhong ◽  
Qian Deng ◽  
Lin Gan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6059
Author(s):  
Raphael Fortulan ◽  
Sima Aminorroaya Yamini

Thermoelectric materials, which directly convert thermal energy to electricity and vice versa, are considered a viable source of renewable energy. However, the enhancement of conversion efficiency in these materials is very challenging. Recently, multiphase thermoelectric materials have presented themselves as the most promising materials to achieve higher thermoelectric efficiencies than single-phase compounds. These materials provide higher degrees of freedom to design new compounds and adopt new approaches to enhance the electronic transport properties of thermoelectric materials. Here, we have summarised the current developments in multiphase thermoelectric materials, exploiting the beneficial effects of secondary phases, and reviewed the principal mechanisms explaining the enhanced conversion efficiency in these materials. This includes energy filtering, modulation doping, phonon scattering, and magnetic effects. This work assists researchers to design new high-performance thermoelectric materials by providing common concepts.


Author(s):  
Yuhei Kawajiri ◽  
Sora-at Tanusilp ◽  
Masaya Kumagai ◽  
Manabu Ishimaru ◽  
Yuji Ohishi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Radostin Danev ◽  
Matthew Belousoff ◽  
Yi-Lynn Liang ◽  
Xin Zhang ◽  
Fabian Eisenstein ◽  
...  

AbstractCryo-electron microscopy (cryo-EM) of small membrane proteins, such as G protein-coupled receptors (GPCRs), remains challenging. Pushing the performance boundaries of the technique requires quantitative knowledge about the contribution of multiple factors. Here, we present an in-depth analysis and optimization of the main experimental parameters in cryo-EM. We combined actual structural studies with methods development to quantify the effects of the Volta phase plate, zero-loss energy filtering, objective lens aperture, defocus magnitude, total exposure, and grid type. By using this information to carefully maximize the experimental performance, it is now possible to routinely determine GPCR structures at resolutions better than 2.5 Å. The improved fidelity of such maps enables the building of better atomic models and will be crucial for the future expansion of cryo-EM into the structure-based drug design domain. The optimization guidelines given here are not limited to GPCRs and can be applied directly to other small proteins.


2021 ◽  
Vol 721 ◽  
pp. 138537
Author(s):  
Anh Tuan Thanh Pham ◽  
Phuong Thanh Ngoc Vo ◽  
Hanh Kieu Thi Ta ◽  
Hoa Thi Lai ◽  
Vinh Cao Tran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document