equality and inequality constraints
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 34)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Nassar Haidar

Abstract Compact neutronic shields for mobile nuclear reactors or accelerator-based neutron beams are known to be optimized multilayered composites. This paper is a simplified short inroad to the complex problem of optimizing the design of such shields when they attenuate a neutron beam to extremise certain quality criteria, in plane geometry, subject to equality and inequality constraints. In the equality constraints, the interfacial polychromatic neutron fluxes are solutions to course-mesh finite-difference holonomic state equations. The set of these interfacial fluxes act as state variables,while the set of layer thicknesses, or their poisoning (by added neutron absorbers) concentrations are decision variables. The entire procedure is then demonstrated to be reducible to standard Kuhn-Tucker semi-linear programming that may also lead robustly to an optimal sequence for these layers.


2021 ◽  
Author(s):  
Rebecca M. Kuiper ◽  
Herbert Hoijtink

The Akaike information criterion for model selection presupposes that the parameter space is not subject to order restrictions or inequality constraints. Anraku (1999) proposed a modified version of this criterion, called the order-restricted information criterion, for model selection in the one-way analysis of variance model when the population means are monotonic. We propose a generalization of this to the case when the population means may be restricted by a mixture of linear equality and inequality constraints. If the model has no inequality constraints, then the generalized order-restricted information criterion coincides with the Akaike information criterion. Thus, the former extends the applicability of the latter to model selection in multi-way analysis of variance models when some models may have inequality constraints while others may not. Simulation shows that the information criterion proposed in this paper performs well in selecting the correct model.


2021 ◽  
pp. 3020-3030
Author(s):  
Jamil A. Ali Al-Hawasy ◽  
Nabeel A. Thyab Al-Ajeeli

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations related with the triple state equations. The Fréchet derivative is obtained. Finally we prove the theorems of both the necessary and sufficient conditions for optimality of the triple nonlinear partial differential equations of elliptic type through the Kuhn-Tucker-Lagrange's Multipliers theorem with equality and inequality constraints.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shui-Lian Xie ◽  
Zhe Sun ◽  
Hong-Ru Xu

AbstractIn this paper, we consider the numerical method for solving finite-dimensional quasi-variational inequalities with both equality and inequality constraints. Firstly, we present a semismooth equation reformulation to the KKT system of a finite-dimensional quasi-variational inequality. Then we propose a semismooth Newton method to solve the equations and establish its global convergence. Finally, we report some numerical results to show the efficiency of the proposed method. Our method can obtain the solution to some problems that cannot be solved by the method proposed in (Facchinei et al. in Comput. Optim. Appl. 62:85–109, 2015). Besides, our method outperforms than the interior point method proposed in (Facchinei et al. in Math. Program. 144:369–412, 2014).


Author(s):  
Paola Patzi Aquino ◽  
Maria do Rosario de Pinho ◽  
Geraldo Nunes Silva

A weak maximal principle for minimax optimal control problems with mixed state-control equality and inequality constraints is provided. In the formulation of the minimax control problem we allow for parameter uncertainties in all functions involved: in the cost function, in the dynamical control system and in the equality and inequality constraints. Then a new constraint qualification of Mangassarian-Fromovitz type is introduced which allowed us to prove the necessary conditions of optimality. We also derived the optimality conditions under a full rank conditions type and showed that it is, as usual, a particular case of the Mangassarian-Fromovitz type condition case. Illustrative examples are presented.


2021 ◽  
Vol Volume 2 (Original research articles>) ◽  
Author(s):  
Lisa C. Hegerhorst-Schultchen ◽  
Christian Kirches ◽  
Marc C. Steinbach

This work continues an ongoing effort to compare non-smooth optimization problems in abs-normal form to Mathematical Programs with Complementarity Constraints (MPCCs). We study general Nonlinear Programs with equality and inequality constraints in abs-normal form, so-called Abs-Normal NLPs, and their relation to equivalent MPCC reformulations. We introduce the concepts of Abadie's and Guignard's kink qualification and prove relations to MPCC-ACQ and MPCC-GCQ for the counterpart MPCC formulations. Due to non-uniqueness of a specific slack reformulation suggested in [10], the relations are non-trivial. It turns out that constraint qualifications of Abadie type are preserved. We also prove the weaker result that equivalence of Guginard's (and Abadie's) constraint qualifications for all branch problems hold, while the question of GCQ preservation remains open. Finally, we introduce M-stationarity and B-stationarity concepts for abs-normal NLPs and prove first order optimality conditions corresponding to MPCC counterpart formulations.


2021 ◽  
Vol Volume 2 (Original research articles>) ◽  
Author(s):  
Lisa C. Hegerhorst-Schultchen ◽  
Christian Kirches ◽  
Marc C. Steinbach

This work is part of an ongoing effort of comparing non-smooth optimization problems in abs-normal form to MPCCs. We study the general abs-normal NLP with equality and inequality constraints in relation to an equivalent MPCC reformulation. We show that kink qualifications and MPCC constraint qualifications of linear independence type and Mangasarian-Fromovitz type are equivalent. Then we consider strong stationarity concepts with first and second order optimality conditions, which again turn out to be equivalent for the two problem classes. Throughout we also consider specific slack reformulations suggested in [9], which preserve constraint qualifications of linear independence type but not of Mangasarian-Fromovitz type.


Author(s):  
Saeed Ketabchi ◽  
Hossein Moosaei ◽  
Milan Hladik

We discuss some basic concepts and present a  numerical procedure  for  finding  the minimum-norm  solution  of  convex quadratic programs (QPs)  subject to linear  equality and inequality   constraints.   Our  approach is based on a  theorem of    alternatives  and  on a convenient  characterization of the solution set of convex QPs.  We   show  that this  problem can be reduced to a simple constrained minimization problem with     a once-differentiable convex  objective  function. We use finite termination of an appropriate  Newton's method to  solve this problem.  Numerical results show that the proposed method is efficient.


Sign in / Sign up

Export Citation Format

Share Document