turbo expander
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 51)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Vol 202 ◽  
pp. 117889
Author(s):  
Jianye Chen ◽  
Lei Xiao ◽  
Yimei Wu ◽  
Xu Gao ◽  
Hong Chen ◽  
...  

2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012073
Author(s):  
Chaojie Li ◽  
Yanqin Mao ◽  
Xiaoyue Wang ◽  
Zhixing Zhan ◽  
Liang Cai

Abstract As everyone pays more attention to energy consumption, it is very meaningful to use natural gas pressure energy for power generation and turbo-expander is an important part of power generation devices. In this paper, the turbo-expander model for pressure energy generation is meshed and numerically simulated based on fluent, and the pressure distribution and velocity distribution in the turbo-expander are obtained. The volute profile is Archimedes spiral, and the impeller is modeled by cfturbo. The main conclusions are as follows: when the number of grids is more than 2.2 million, the simulation results are less affected by the number of grids. The internal basin of the turbo-expander has obvious pressure gradient and velocity gradient. Due to the negative pressure at the elbow of the inlet pipe of the centrifugal effect, the existence of the blade leads to the change of the flow direction. Different watershed planes have different pressure and velocity distributions. The velocity and pressure of the watershed plane near the impeller outlet and the volute outlet are often smaller, but the flow vortex is more intense.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052019
Author(s):  
A V Egorov ◽  
Yu F Kaizer ◽  
A V Lysyannikov ◽  
A V Kuznetsov ◽  
Yu N Bezborodov ◽  
...  

Abstract The purpose of this work is to estimate the energy costs for the utilization of carbon dioxide generated by thermal power plants operating on various types of fuel by the liquefaction method as part of a turbo-expander installation, as well as a general assessment of the efficiency of the TPP during the utilization of carbon dioxide. The energy costs for the liquefaction of carbon dioxide in the turbo-expander unit from the combustion products of thermal power plants running on coal, natural gas and heating oil differ slightly and amount to about 5 MJ/kg of fuel burned. The practical application of purification of combustion products of thermal power plants from carbon dioxide by the liquefaction method as part of a turboexpander installation is possible as part of combined-cycle power plants with a simultaneous reduction in electrical efficiency by more than 10 % to a level of less than 50 %.


2021 ◽  
Author(s):  
Zoitis Giakoumis ◽  
E. Geoffrey Engelbrecht ◽  
Alexandros Chasoglou ◽  
Ndaona Chokani

2021 ◽  
Vol 68 (2) ◽  
pp. 304-312
Author(s):  
Adel El-Husseiny ◽  
Rania Farouq ◽  
Hassan A. Farag ◽  
Yehia El Taweel

Natural gas is a mixture that is widely used in the industries. Knowledge of its thermodynamic properties is essential for evaluating the process and equipment performance. This paper quantifies the energy that can be extracted from natural gas using a turbo expander. Natural gases of wide-ranging compositions collected from 6 different gas fields in Egypt were investigated based on energy and exergy analysis. The study was conducted using MATLAB. Numerous simulation runs were made by taking various typical feed compositions classified as lean and rich. The effects of increasing the amount of C1, C5 in the feed stream on the efficiency of energy utilization are presented. A validation analysis was performed. The results show similar trends and good agreements. It was concluded from the results that when the concentration of methane in the gas mixture increase, the exergetic efficiency decreases. The results also show that the values of thermodynamic properties depend on the relative amount of heavy components in the feed stream.


Sign in / Sign up

Export Citation Format

Share Document