AbstractGenome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.Author summaryMeiosis is essential for sexual reproduction to produce haploid gametes. Prophase I represents a crucial meiotic stage because key processes such as chromosomal pairing, synapsis and desynapsis, recombination, and transcriptional silencing occur at this time. Alterations in each of these processes can activate meiotic checkpoints and lead to the elimination of meiocytes. Here we have shown that two groups of experimental hybrids, intraspecific and interspecific—which were heterozygous for 10 identical Robertsonian translocations—had pachytene irregularities and reduced recombination. However, intraspecific and interspecific hybrids exhibited different patterns of synaptonemal complex (SC) trivalent behavior. In the former, open SC trivalents comprised SC chains due to heterosynapsis of short arms of acrocentrics in early and mid-pachytene and were then able to form 2–4 and even 7 and 10 closed SC trivalents in the late pachytene and diplotene stages. In the second mole voles, SC trivalents had stretched centromeres of the metacentrics, and chains of SC trivalents were formed due to stretched centromeres of acrocentrics. Such compounds could not lead to the formation of separate closed SC trivalents. The distant ancestral points of chromosome attachment with a nuclear envelope in the heterozygous nuclei probably lead to stretching of SC trivalents and their centromeric regions, which can be regarded as an indicator of the reorganization of the intranuclear chromatin landscape. These abnormalities, which were revealed in in prophase I, contribute to a decrease the fertility of intraspecific mole voles and promote the sterility of interspecific mole voles.