rate oscillations
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 16)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kaoru Nashiro ◽  
Jungwon Min ◽  
Hyun Joo Yoo ◽  
Christine Cho ◽  
Shelby L Bachman ◽  
...  

Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance brain function? To test this possibility, we randomly assigned 106 young adult participants to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain activity during rest and during regulating emotion. In this healthy cohort, the two conditions did not differentially affect anxiety, depression or mood. However, the Osc+ intervention increased low-frequency heart rate variability and increased brain oscillatory dynamics and functional connectivity in emotion-related resting-state networks. It also increased down-regulation of activity in somatosensory brain regions during an emotion regulation task. The Osc- intervention did not have these effects. These findings indicate that heart rate oscillatory activity not only reflects the current state of regulatory brain systems but also changes how the brain operates beyond the moments of high oscillatory activity.


Author(s):  
Jihang Li ◽  
Hyunguk Kwon ◽  
Drue Seksinsky ◽  
Daniel G Doleiden ◽  
Jacqueline O'Connor ◽  
...  

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot gases as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. To understand these results, we use large-eddy simulation to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame.


2021 ◽  
Author(s):  
Jihang Li ◽  
Hyunguk Kwon ◽  
Drue Seksinsky ◽  
Daniel Doleiden ◽  
Jacqueline O’Connor ◽  
...  

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot gases as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot flame efficacy increases with pilot flame equivalence ratio until it matches the main flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.


Author(s):  
Adam Howie ◽  
Daniel G Doleiden ◽  
Stephen Peluso ◽  
Jacqueline O'Connor

Abstract The use of lean, premixed fuel and air mixtures is a common strategy to reduce NOx emissions in gas turbine combustors. However, this strategy causes an increased susceptibility to self-excited instability, which manifests as fluctuations in heat release rate, flow velocity, and combustor acoustics that oscillate in-phase in a feedback loop. This study considers the effect of the level of premixedness on the self-excited instability in a single-nozzle combustor. In this system, the fuel can be injected inside the nozzle to create a partially-premixed mixture or far upstream to create a fully-premixed mixture, varying the level of premixedness of the fuel and air entering the combustor. When global equivalence ratio is held constant, the cases with higher levels of premixing have higher instability amplitudes. High-speed CH* chemiluminescence imaging shows that the flame for these cases is more compact and the distribution of the heat release rate oscillations is more concentrated near the corner of the combustor in the outer recirculation zones. Rayleigh index images, which are a metric for quantifying the relative phase of pressure and heat release rate oscillations, suggest that vortex rollup in the corner region is primarily responsible for determining instability characteristics when premixedness is varied. This finding is further supported through analysis of local flame edge dynamics.


Author(s):  
Vasily V. Kaichev ◽  
Zakhar S. Vinokurov ◽  
Andrey A. Saraev

The oxidation of methane was studied in a flow reactor at atmospheric pressure using palladium foil as a catalyst. It was shown that regular self-sustained reaction rate oscillations arise under...


2020 ◽  
Vol 5 (12) ◽  
Author(s):  
Rahul Arun ◽  
Scott T. M. Dawson ◽  
Peter J. Schmid ◽  
Angeliki Laskari ◽  
Beverley J. McKeon

Author(s):  
Adam Howie ◽  
Daniel Doleiden ◽  
Stephen Peluso ◽  
Jacqueline O’Connor

Abstract The use of lean, premixed fuel and air mixtures is a common strategy to reduce NOx emissions in gas turbine combustors. However, this strategy causes an increased susceptibility to self-excited instability, which manifests as fluctuations in heat release rate, flow velocity, and combustor acoustics that oscillate in-phase in a feedback loop. This study considers the effect of the level of premixedness on the self-excited instability in a single-nozzle combustor. In this system, the fuel can be injected inside the nozzle to create a partially-premixed mixture or far upstream to create a fully-premixed mixture, varying the level of premixedness of the fuel and air entering the combustor. When global equivalence ratio is held constant, the cases with higher levels of premixing have higher instability amplitudes. Highspeed CH* chemiluminescence imaging shows that the flame for these cases is more compact and the distribution of the heat release rate oscillations is more concentrated near the corner of the combustor in the outer recirculation zones. Rayleigh index images, which are a metric for quantifying the relative phase of pressure and heat release rate oscillations, suggest that vortex rollup in the corner region is primarily responsible for determining instability characteristics when premixedness is varied. This finding is further supported through analysis of local flame edge dynamics.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuanhong Bi ◽  
Quansheng Liu ◽  
Jingyi Zhao ◽  
Wuritu Yang

Exploring the behaviors of beta oscillations in the basal ganglia is helpful to understand the mechanism of Parkinson’s disease. Studies have shown that the external and internal segments (GPe, GPi) of the globus pallidus receive different intensities of signals from the striatum in Parkinson’s disease and play different roles in the production of beta oscillations, but the relevant mechanism still remains unclear. Based on a model of the subthalamic nucleus (STN) and globus pallidus (GP), we propose an extended STN-GPe-GPi model and analyze the dynamical behaviors of beta oscillations in this model. The stability condition is obtained through theoretical analyses, and the generation of beta oscillations by the inputs from the cortex and striatum is further considered. The influence of some parameters related to GPi on its firing rate oscillations is discussed. The results obtained in this paper are expected to play a guiding role in the medical treatment of Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document