weld metal microstructure
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ottaviano Grisolia ◽  
Lorenzo Scano ◽  
Francesco Piccini ◽  
Antonietta Lo Conte ◽  
Massimiliano De Agostinis ◽  
...  

Abstract Previous study carried out creep analysis for steam generator high-temperature-section two components, outflow tubing and manifold of the superheater harp: they may have been critical because of the long continued service (109,000 hours or twelve years) and loading conditions, including maximum operation temperature (565°C) and applied stress (65 MPa). Metallographic methods by replica had showed no evidence of the creep cavitation in all the positions considered for both tubing and manifold. In particular, they had not found any cavitation or phases affecting creep strength of the material in the base, HAZ and weld metal microstructure. Now, present study carries out investigation for the two components based on the next plant outage outcome, after further 20,000-hours service. Both metallographic methods and hardness measurements’ results would compare with previous ones providing microstructure evolution in the period.


2021 ◽  
Vol 11 (4) ◽  
pp. 1463 ◽  
Author(s):  
Fabio Giudice ◽  
Andrea Sili

In the present work an approach to weld metal microstructure prediction is proposed, based on an analytical method that allows the evaluation of the thermal fields generated during the laser beam travel on thick plates. Reference is made to AISI 304L austenitic steel as a base material, with the aim to predict the molten zone microstructure and verify the best condition to avoid hot cracking formation, which is a typical issue in austenitic steel welding. The “keyhole” full penetration welding mode, characteristic of high-power laser beam, was simulated considering the phenomenological laws of conduction by the superimposition of a line thermal source along the whole thickness and two point sources located, respectively, on the surface and at the position of the beam focus inside the joint. This model was fitted on the basis of the fusion zone profile, which was experimentally detected on a weld seam obtained by means of a CO2 laser beam, in a single pass on two squared edged AISI 304L plates, that were butt-positioned. Then the model was applied to evaluate the thermal fields and cooling rates, the fusion zone composition and the solidification mode.


2020 ◽  
Vol 62 (9) ◽  
pp. 883-887
Author(s):  
Mustafa Tümer

Abstract Hastelloy C-276 is a corrosion resistant nickel based solid solution hardened industrial alloy which has superior mechanical and corrosion properties. In this study, Hastelloy C-276 alloy was welded via the GTAW (Gas tungsten arc welding) method using ERNiCrMo-4 filler metal. Tensile, bending and notch impact tests were performed to determine the mechanical properties. The microstructure of the weld metal was investigated by light microscopy (LM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The impact toughness values of the heat affected zone (HAZ) showed a better performance than those of the weld metal. In addition, the corrosion properties of the weld metal and the base material were investigated by potentiodynamic polarization tests. Electrochemical potentiodynamic polarization parameters were determined according to corrosion behavior and microstructure properties. In particular, the corrosion rate of the weld metal increased because of the Mo-rich phases deposited in the weld metal microstructure.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 603 ◽  
Author(s):  
Chaoyu Han ◽  
Zhipeng Cai ◽  
Manjie Fan ◽  
Xia Liu ◽  
Kejian Li ◽  
...  

Low pressure turbine rotors are manufactured by welding thick sections of 25Cr2Ni2MoV rotor steel using tungsten inert gas (TIG) backing weld, and submerged arc welding (SAW) filling weld. In this study, the microstructure of columnar grain zones and reheated zones in weld metal was characterized meticulously by Optical Microscope (OM), Scanning Electron Microscope (SEM) and Electron Back-Scatter Diffraction (EBSD). The results showed that, compared with SAW weld metal microstructure, TIG weld metal microstructure was relatively fine and homogeneous, due to its lower heat input and faster cooling rate than SAW. The maximum effective grain size in TIG and SAW weld were 7.7 μm and 13.2 μm, respectively. TIG weld metal was composed of lath bainite (LB) and blocky ferrite (BF), while SAW weld metal was composed of acicular ferrite (AF), lath bainite (LB)and ferrite side plate (FSP). Tempered martensite (TM) was detected along columnar grain boundaries in both TIG and SAW weld metals, which was related to the segregation of solute elements during weld solidification. Electron Probe Micro-Analysis (EPMA) results showed that the contents of Ni and Mn at the dendritic boundaries were 50% higher than those at the dendritic core in TIG weld. Similarly, 30% of Ni and Mn segregation at dendritic boundaries was also found in SAW weld. In addition, the microhardness of the two welded joints was tested.


Author(s):  
JAIME MATIAS DA SILVA NETO ◽  
Theophilo Maciel ◽  
Antonio Almeida Silva ◽  
Epitácio Bronzeado ◽  
Rafael Santos

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mirosław Szala ◽  
Daniel Łukasik

This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.


Sign in / Sign up

Export Citation Format

Share Document