Purpose
To mitigate the problems in sensor-based facility management (FM) such as lack of detailed visual information about a built facility and the maintenance of large scale sensor deployments, an integrated data source for the facility’s life cycle should be used. Building information modeling (BIM) provides a useful visual model and database that can be used as a repository for all data captured or made during the facility’s life cycle. It can be used for modeling the sensing-based system for data collection, serving as a source of all information for smart objects such as the sensors used for that purpose. Although few studies have been conducted in integrating BIM with sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between FMs and Internet of Things (IoT) companies in cases encountered failed sensors has received the least attention in the technical literature. Therefore, the purpose of this paper is to conceptualize and develop a BIM-based system architecture for fault detection and alert generation for malfunctioning FM sensors in smart IoT environments during the operational phase of a building to ensure minimal disruption to monitoring services.
Design/methodology/approach
This paper describes an attempt to examine the applicability of BIM for an efficient sensor failure management system in smart IoT environments during the operational phase of a building. For this purpose, a seven-story office building with four typical types of FM-related sensors with all associated parameters was modeled in a commercial BIM platform. An integrated workflow was developed in Dynamo, a visual programming tool, to integrate the associated sensors maintenance-related information to a cloud-based tool to provide a fast and efficient communication platform between the building facility manager and IoT companies for intelligent sensor management.
Findings
The information within BIM allows better and more effective decision-making for building facility managers. Integrating building and sensors information within BIM to a cloud-based system can facilitate better communication between the building facility manager and IoT company for an effective IoT system maintenance. Using a developed integrated workflow (including three specifically designed modules) in Dynamo, a visual programming tool, the system was able to automatically extract and send all essential information such as the type of failed sensors as well as their model and location to IoT companies in the event of sensor failure using a cloud database that is effective for the timely maintenance and replacement of sensors. The system developed in this study was implemented, and its capabilities were illustrated through a case study. The use of the developed system can help facility managers in taking timely actions in the event of any sensor failure and/or malfunction to ensure minimal disruption to monitoring services.
Research limitations/implications
However, there are some limitations in this work which are as follows: while the present study demonstrates the feasibility of using BIM in the maintenance planning of monitoring systems in the building, the developed workflow can be expanded by integrating some type of sensors like an occupancy sensor to the developed workflow to automatically record and identify the number of occupants (visitors) to prioritize the maintenance work; and the developed workflow can be integrated with the sensors’ data and some machine learning techniques to automatically identify the sensors’ malfunction and update the BIM model accordingly.
Practical implications
Transferring the related information such as the room location, occupancy status, number of occupants, type and model of the sensor, sensor ID and required action from the BIM model to the cloud would be extremely helpful to the IoT companies to actually visualize workspaces in advance, and to plan for timely and effective decision-making without any physical inspection, and to support maintenance planning decisions, such as prioritizing maintenance works by considering different factors such as the importance of spaces and number of occupancies. The developed framework is also beneficial for preventive maintenance works. The system can be set up according to the maintenance and time-based expiration schedules, automatically sharing alerts with FMs and IoT maintenance contractors in advance about the IoT parts replacement. For effective predictive maintenance planning, machine learning techniques can be integrated into the developed workflow to efficiently predict the future condition of individual IoT components such as data loggers and sensors, etc. as well as MEP components.
Originality/value
Lack of detailed visual information about a built facility can be a reason behind the inefficient management of a facility. Detecting and repairing failed sensors at the earliest possible time is critical to ensure the functional continuity of the monitoring systems. On the other hand, the maintenance of large-scale sensor deployments becomes a significant challenge. Despite its importance, few studies have been conducted in integrating BIM with a sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between facility managers and IoT companies in cases encountered failed sensors. In this paper, a cloud-based BIM platform was developed for the maintenance and timely replacement of sensors which are critical to ensure minimal disruption to monitoring services in sensor-based FM.