control assembly
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 29)

H-INDEX

13
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Longfei Zhou ◽  
Lin Zhang ◽  
Nicholas Konz

Computer vision techniques have played an important role in promoting the informatization, digitization and intelligence of industrial manufacturing systems. Considering the rapid development of computer vision techniques, we present a comprehensive review of the state-of-the-art of these techniques and their applications in manufacturing industries. We survey the most common methods, including feature detection, recognition, segmentation and 3D modeling. A system framework of computer vision in the manufacturing environment is proposed, consisting of a lighting module, a manufacturing system, a sensing module, computer vision algorithms, a decision-making module, and an actuator. Applications of computer vision to different stages of the entire product life cycle are then explored, including product design, modeling and simulation, planning and scheduling, the production process, inspection and quality control, assembly, transportation, and disassembly. Challenges include algorithm implementation, data pre-processing, data labeling, and benchmarks. Future directions include building benchmarks, developing methods for non-annotated data processing, developing effective data pre-processing mechanisms, customizing computer vision models, and opportunities aroused by 5G.


2021 ◽  
Author(s):  
Longfei Zhou ◽  
Lin Zhang ◽  
Nicholas Konz

Computer vision techniques have played an important role in promoting the informatization, digitization and intelligence of industrial manufacturing systems. Considering the rapid development of computer vision techniques, we present a comprehensive review of the state-of-the-art of these techniques and their applications in manufacturing industries. We survey the most common methods, including feature detection, recognition, segmentation and 3D modeling. A system framework of computer vision in the manufacturing environment is proposed, consisting of a lighting module, a manufacturing system, a sensing module, computer vision algorithms, a decision-making module, and an actuator. Applications of computer vision to different stages of the entire product life cycle are then explored, including product design, modeling and simulation, planning and scheduling, the production process, inspection and quality control, assembly, transportation, and disassembly. Challenges include algorithm implementation, data pre-processing, data labeling, and benchmarks. Future directions include building benchmarks, developing methods for non-annotated data processing, developing effective data pre-processing mechanisms, customizing computer vision models, and opportunities aroused by 5G.


Author(s):  
Shikha N. Singh ◽  
K.R. Rajesh ◽  
S. Sunil
Keyword(s):  

2021 ◽  
Vol 2113 (1) ◽  
pp. 012005
Author(s):  
Dong Fan ◽  
Feifei Lu

Abstract In the process of conventional rope core drilling, the connection and disassembly of waterway occupy a lot of auxiliary time, which seriously affects the drilling efficiency, and even causes drilling or safety accidents. The waterway control assembly and application method for the rope coring rig developed by the author’s team can control the waterway flow direction. It does not need to disassemble the water pipe frequently to control the raising speed of the inner pipe and avoid damaging the drilling tool too fast.Introduction.


RNA ◽  
2021 ◽  
Vol 27 (12) ◽  
pp. 1589-1601
Author(s):  
Raghav R. Poudyal ◽  
Jacob P. Sieg ◽  
Bede Portz ◽  
Christine D. Keating ◽  
Philip C. Bevilacqua

Intracellular condensates formed through liquid–liquid phase separation (LLPS) primarily contain proteins and RNA. Recent evidence points to major contributions of RNA self-assembly in the formation of intracellular condensates. As the majority of previous studies on LLPS have focused on protein biochemistry, effects of biological RNAs on LLPS remain largely unexplored. In this study, we investigate the effects of crowding, metal ions, and RNA structure on formation of RNA condensates lacking proteins. Using bacterial riboswitches as a model system, we first demonstrate that LLPS of RNA is promoted by molecular crowding, as evidenced by formation of RNA droplets in the presence of polyethylene glycol (PEG 8K). Crowders are not essential for LLPS, however. Elevated Mg2+ concentrations promote LLPS of specific riboswitches without PEG. Calculations identify key RNA structural and sequence elements that potentiate the formation of PEG-free condensates; these calculations are corroborated by key wet-bench experiments. Based on this, we implement structure-guided design to generate condensates with novel functions including ligand binding. Finally, we show that RNA condensates help protect their RNA components from degradation by nucleases, suggesting potential biological roles for such higher-order RNA assemblies in controlling gene expression through RNA stability. By utilizing both natural and artificial RNAs, our study provides mechanistic insight into the contributions of intrinsic RNA properties and extrinsic environmental conditions to the formation and regulation of condensates comprised of RNAs.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 644
Author(s):  
Carlus Deneke ◽  
Holger Brendebach ◽  
Laura Uelze ◽  
Maria Borowiak ◽  
Burkhard Malorny ◽  
...  

Sequencing of whole microbial genomes has become a standard procedure for cluster detection, source tracking, outbreak investigation and surveillance of many microorganisms. An increasing number of laboratories are currently in a transition phase from classical methods towards next generation sequencing, generating unprecedented amounts of data. Since the precision of downstream analyses depends significantly on the quality of raw data generated on the sequencing instrument, a comprehensive, meaningful primary quality control is indispensable. Here, we present AQUAMIS, a Snakemake workflow for an extensive quality control and assembly of raw Illumina sequencing data, allowing laboratories to automatize the initial analysis of their microbial whole-genome sequencing data. AQUAMIS performs all steps of primary sequence analysis, consisting of read trimming, read quality control (QC), taxonomic classification, de-novo assembly, reference identification, assembly QC and contamination detection, both on the read and assembly level. The results are visualized in an interactive HTML report including species-specific QC thresholds, allowing non-bioinformaticians to assess the quality of sequencing experiments at a glance. All results are also available as a standard-compliant JSON file, facilitating easy downstream analyses and data exchange. We have applied AQUAMIS to analyze ~13,000 microbial isolates as well as ~1000 in-silico contaminated datasets, proving the workflow’s ability to perform in high throughput routine sequencing environments and reliably predict contaminations. We found that intergenus and intragenus contaminations can be detected most accurately using a combination of different QC metrics available within AQUAMIS.


Author(s):  
Hui-Min Zeng ◽  
Wei-Hong Wu ◽  
Chao Wang ◽  
Zhan-Guo Jiang ◽  
Cai-Hong Zhan

Fluorescent dyes as Rhodamine R6G usually suffer from quenching caused by aggregation in the solid state. Herein, we enhance the solid state luminescence of R6G by controlling assemblies of Rhodamine...


2020 ◽  
Vol 48 (14) ◽  
pp. 7681-7689
Author(s):  
Hector F Espitia-Navarro ◽  
Aroon T Chande ◽  
Shashwat D Nagar ◽  
Heather Smith ◽  
I King Jordan ◽  
...  

Abstract Genome-enabled approaches to molecular epidemiology have become essential to public health agencies and the microbial research community. We developed the algorithm STing to provide turn-key solutions for molecular typing and gene detection directly from next generation sequence data of microbial pathogens. Our implementation of STing uses an innovative k-mer search strategy that eliminates the computational overhead associated with the time-consuming steps of quality control, assembly, and alignment, required by more traditional methods. We compared STing to six of the most widely used programs for genome-based molecular typing and demonstrate its ease of use, accuracy, speed and efficiency. STing shows superior accuracy and performance for standard multilocus sequence typing schemes, along with larger genome-scale typing schemes, and it enables rapid automated detection of antimicrobial resistance and virulence factor genes. STing determines the sequence type of traditional 7-gene MLST with 100% accuracy in less than 10 seconds per isolate. We hope that the adoption of STing will help to democratize microbial genomics and thereby maximize its benefit for public health.


2020 ◽  
Vol 33 (4) ◽  
pp. 653-667 ◽  
Author(s):  
Marta Hervás ◽  
Rosana Navajas ◽  
Mónica Chagoyen ◽  
Juan Antonio García ◽  
Sandra Martínez-Turiño

Eukaryotic proteins are often targets of posttranslational modifications (PTMs). Capsid protein (CP) of plum pox virus (PPV), a member of genus Potyvirus, has been reported to be prone to phosphorylation in four serines at the N-terminal region. CP phosphorylation has been proposed to influence PPV infection by regulating CP accumulation in coordination with a second PTM, O-GlcNAcylation. In this study, a further proteomic characterization of PPV CP phosphorylation revealed additional phospho-targets, thus evidencing even greater complexity of the network of PTMs affecting this protein. In particular, two new phosphorylation targets, T254 and T313, at protein distal core, appear to be highly relevant for infection. Although abolishing phosphorylation at these positions does not have a severe effect on infectivity or viral accumulation, phospho-mimicking at either of these targets disrupts cell-to-cell movement. Strand-specific reverse transcription-quantitative PCR analysis and fractionation by centrifugation in a continuous sucrose gradient enabled us to conclude that such a deleterious effect is not related to failures in replication but is a consequence of inaccurate virion assembly. The analysis of spontaneous compensatory mutations at the CP core identified in a multiple phospho-mimicking mutant disclosed a functional dialogue between distant phospho-targets, which was further supported by an in silico PPV virion model, built on the watermelon mosaic virus atomic structure. Therefore, whereas joint and opposite action of O-GlcNAcylation and phosphorylation at the N-terminal disordered protrusion of CP appears to regulate protein stability, we propose that phosphorylations at the core region control assembly and disassembly of viral particles.


Sign in / Sign up

Export Citation Format

Share Document