scfv library
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1933
Author(s):  
Fangyu Wang ◽  
Ning Li ◽  
Yunshang Zhang ◽  
Xuefeng Sun ◽  
Man Hu ◽  
...  

An immunized mouse phage display scFv library with a capacity of 3.34 × 109 CFU/mL was constructed and used for screening of recombinant anti-ciprofloxacin single-chain antibody for the detection of ciprofloxacin (CIP) in animal-derived food. After four rounds of bio-panning, 25 positives were isolated and identified successfully. The highest positive scFv-22 was expressed in E. coli BL21. Then, its recognition mechanisms were studied using the molecular docking method. The result showed the amino acid residue Val160 was the key residue for the binding of scFv to CIP. Based on the results of virtual mutation, the scFv antibody was evolved by directional mutagenesis of contact amino acid residue Val160 to Ser. After the expression and purification, an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on the parental and mutant scFv was established for CIP, respectively. The IC50 value of the assay established with the ScFv mutant was 1.58 ng/mL, while the parental scFv was 26.23 ng/mL; this result showed highly increased affinity, with up to 16.6-fold improved sensitivity. The mean recovery for CIP ranged from 73.80% to 123.35%, with 10.46% relative standard deviation between the intra-assay and the inter-assay. The RSD values ranged between 1.49% and 9.81%. The results indicate that we obtained a highly sensitive anti-CIP scFv by the phage library construction and directional evolution, and the scFv-based IC-ELISA is suitable for the detection of CIP residue in animal-derived edible tissues.


2021 ◽  
Author(s):  
Fangyu Wang ◽  
Ning Li ◽  
Yunshang Zhang ◽  
Xuxefeng Sun ◽  
Yali Zhao ◽  
...  

Abstract A recombinant anti-enrofloxacin single-chain antibody (scFv) was produced for the detection of enrofloxacin. An immunized mouse phage display scFv library with a capacity of 2.35×109 CFU/mL was constructed and used for anti-enrofloxacin scFv screening. After four rounds of bio-panning, 10 positives were isolated and identified successfully. The highest positive scFv was expressed in E. coli BL21. Then, its recognition mechanisms were studied using the molecular docking method. The result showed the amino acid residues Leu121 were the key residues for the binding of ScFv to ENR. Based on the results of virtual mutation, the ScFv antibody was evolved by directional mutagenesis of contact amino acid residue Leu121 to Asn. After the expression and purification, an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on the parental and mutant ScFv were established for enrofloxacin respectively. The IC50 value of the assay established with the ScFv mutant was 1.63 ng/mL, while the parental ScFv was 21.08 ng/mL, this result showed highly increased affinity with up to 12.9-folds improved sensitivity. The mean recovery for ENR ranged from 71.80% to 117.35% with 10.46% relative standard deviation between the intra-assay and the inter-assay. The results indicate that we have obtained a highly sensitive anti-ENR scFv by the phage library construction and directional evolution, and the scFv-based IC-ELISA is suitable for the detection of ENR residue in animal derived edible tissues and milk.


2021 ◽  
Author(s):  
Guangxu Xing ◽  
Yunshang Zhang ◽  
Fangyu Wang ◽  
Liuding Wen ◽  
Gaiping Zhang

Abstract A recombinant anti-enrofloxacin single-chain antibody (scFv) was produced for the detection of enrofloxacin. An immunized mouse phage display scFv library with a capacity of 2.35×109 CFU/mL was constructed and used for anti-enrofloxacin scFv screening. After four rounds of bio-panning, 10 positives were isolated and identified successfully. The highest positive scFv was expressed in E. coli BL21. Then, its recognition mechanisms were studied using the molecular docking method. The result showed the amino acid residues Leu121 were the key residues for the binding of ScFv to ENR. Based on the results of virtual mutation, the ScFv antibody was evolved by directional mutagenesis of contact amino acid residue Leu121 to Asn. After the expression and purification, an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on the parental and mutant ScFv were established for enrofloxacin respectively. The IC50 value of the assay established with the ScFv mutant was 1.63 ng/mL, while the parental ScFv was 21.08 ng/mL, this result showed highly increased affinity with up to 12.9-folds improved sensitivity. The mean recovery for ENR ranged from 71.80% to 117.35% with 10.46% relative standard deviation between the intra-assay and the inter-assay. The results indicate that we have obtained a highly sensitive anti-ENR scFv by the phage library construction and directional evolution, and the scFv-based IC-ELISA is suitable for the detection of ENR residue in animal derived edible tissues and milk.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Toshiki Ochi ◽  
Masaki Maruta ◽  
Kazushi Tanimoto ◽  
Fumitake Kondo ◽  
Toshihiro Yamamoto ◽  
...  

AbstractCancer immunotherapy using T cells redirected with chimeric antigen receptor (CAR) has shown a lot of promise. We have established a single-chain antibody (scFv) generation system in which scFv library-expressing CAR-T cells can be screened appropriately based on their antitumor functions. A variable region library containing the variable and J regions of the human immunoglobulin light or heavy chain was fused with the variable region of a heavy or light chain encoded by an existing tumor-specific antibody to generate a new scFv library. Then, scFv library-expressing CAR-T cells were generated and stimulated with target cells to concentrate the antigen-specific population. Using this system, target-specific recognition of CAR-T cells appeared to be finely tuned by selecting a new variable region. Importantly, we have demonstrated that the newly optimized scFv-expressing CAR-T cells had better proliferation capacity and durable phenotypes, enabling superior reactivity against advanced tumors in vivo in comparison with the original CAR-T cells. Therefore, the optimization of an scFv is needed to maximize the in vivo antitumor functions of CAR-T cells. This system may allow us to adjust an immunological synapse formed by an scFv expressed by CAR-T cells and a target antigen, representing an ideal form of CAR-T-cell immunotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anizah Rahumatullah ◽  
Dinesh Balachandra ◽  
Rahmah Noordin ◽  
Zamrina Baharudeen ◽  
Yee Ying Lim ◽  
...  

AbstractAntibodies have different chemical properties capable of targeting a diverse nature of antigens. Traditionally, immune antibody libraries are perceived to be disease-specific with a skewed repertoire. The complexity during the generation of a combinatorial antibody library allows for a skewed but diverse repertoire to be generated. Strongyloides stercoralis is a parasite that causes strongyloidiasis, a potentially life-threatening disease with a complex diagnosis that impedes effective control and treatment of the disease. This study describes the isolation of monoclonal antibodies against S. stercoralis NIE recombinant protein using an immune antibody phage display library derived from lymphatic filaria-infected individuals. The isolated antibody clones showed both lambda and kappa light chains gene usage, with diverse amino acid distributions. Structural analysis showed that electropositivity and the interface area could determine the binding affinity of the clones with NIE. The successful identification of S. stercoralis antibodies from the filarial immune library highlights the breadth of antibody gene diversification in an immune antibody library that can be applied for closely related infections.


2020 ◽  
Author(s):  
Matthew D. Beasley ◽  
Sanja Aracic ◽  
Fiona M. Gracey ◽  
Ruban Kannan ◽  
Avisa Masarati ◽  
...  

AbstractAntibodies with high affinity against the receptor binding domain (RBD) of the SARS-CoV-2 S1 ectodomain were identified from screens using the Retained Display™ (ReD) platform employing a 1 × 1011 clone single-chain antibody (scFv) library. Numerous unique scFv clones capable of inhibiting binding of the viral S1 ectodomain to the ACE2 receptor in vitro were characterized. To maximize avidity, selected clones were reformatted as bivalent diabodies and monoclonal antibodies (mAb). The highest affinity mAb completely neutralized live SARS-CoV-2 virus in cell culture for four days at a concentration of 6.7 nM, suggesting potential therapeutic and/or prophylactic use. Furthermore, scFvs were identified that greatly increased the interaction of the viral S1 trimer with the ACE2 receptor, with potential implications for vaccine development.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seohee Chang ◽  
Soohyun Kim ◽  
Jerome Han ◽  
Suji Ha ◽  
Hyunho Lee ◽  
...  

Phage display is one of the most frequently used platform technologies utilized to screen and select therapeutic antibodies, and has contributed to the development of more than 10 therapeutic antibodies used in the clinic. Despite advantages like efficiency and low cost, it has intrinsic technical limitations, such as the asymmetrical amplification of the library after each round of biopanning, which is regarded as a reason for it yielding a very limited number of antigen binders. In this study, we developed a high-throughput single-clonal screening system comprised of fluorescence immunoassays and a laser-driven clonal DNA retrieval system using microchip technology. Using this system, from a single-chain variable fragment (scFv) library displayed on phages with a complexity of 5.21 × 105 harboring random mutations at five amino acid residues, more than 70,000 clones—corresponding to ~14% of the library complexity—were screened, resulting in 78 antigen-reactive scFv sequences with mutations restricted to the randomized residues. Our results demonstrate that this system can significantly reduce the number of biopanning rounds, or even eliminate the need for this process for libraries with lower complexity, providing an opportunity to obtain more diverse clones from the library.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 421 ◽  
Author(s):  
Duck Kyun Yoo ◽  
Seung Ryul Lee ◽  
Yushin Jung ◽  
Haejun Han ◽  
Hwa Kyoung Lee ◽  
...  

c-Met is a promising target in cancer therapy for its intrinsic oncogenic properties. However, there are currently no c-Met-specific inhibitors available in the clinic. Antibodies blocking the interaction with its only known ligand, hepatocyte growth factor, and/or inducing receptor internalization have been clinically tested. To explore other therapeutic antibody mechanisms like Fc-mediated effector function, bispecific T cell engagement, and chimeric antigen T cell receptors, a diverse panel of antibodies is essential. We prepared a chicken immune scFv library, performed four rounds of bio-panning, obtained 641 clones using a high-throughput clonal retrieval system (TrueRepertoireTM, TR), and found 149 antigen-reactive scFv clones. We also prepared phagemid DNA before the start of bio-panning (round 0) and, after each round of bio-panning (round 1–4), performed next-generation sequencing of these five sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 443,292 LCDR3 clonotypes along with their clonal abundance data. We then established a TR data set consisting of antigen reactivity for scFv clones found in TR analysis and the clonal abundance of their HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using the TR data set, a random forest machine learning algorithm was trained to predict the binding properties of in silico HCDR3 and LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 LCDR3 clonotypes predicted to be antigen reactive (AR) and constructed a phage-displayed scFv library called the AR library. In parallel, we also prepared an antigen non-reactive (NR) library using 10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a single round of bio-panning, we screened 96 randomly-selected phage clones from the AR library and found out 14 AR scFv clones consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also screened 96 randomly-selected phage clones from the NR library, but did not identify any AR clones. In summary, machine learning algorithms can provide a method for identifying AR antibodies, which allows for the characterization of diverse antibody libraries inaccessible by traditional methods.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nancy Chaaya ◽  
Melody A. Shahsavarian ◽  
Irene Maffucci ◽  
Alain Friboulet ◽  
Bernard Offmann ◽  
...  

Abstract The relationship between the immune repertoire and the physiopathological status of individuals is essential to apprehend the genesis and the evolution of numerous pathologies. Nevertheless, the methodological approaches to understand these complex interactions are challenging. We performed a study evaluating the diversity harbored by different immune repertoires as a function of their physiopathological status. In this study, we base our analysis on a murine scFv library previously described and representing four different immune repertoires: i) healthy and naïve, ii) healthy and immunized, iii) autoimmune prone and naïve, and iv) autoimmune prone and immunized. This library, 2.6 × 109 in size, is submitted to high throughput sequencing (Next Generation Sequencing, NGS) in order to analyze the gene subgroups encoding for immunoglobulins. A comparative study of the distribution of immunoglobulin gene subgroups present in the four libraries has revealed shifts in the B cell repertoire originating from differences in genetic background and immunological status of mice.


Antibodies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Angélica Medina-Cucurella ◽  
Rena Mizrahi ◽  
Michael Asensio ◽  
Robert Edgar ◽  
Jackson Leong ◽  
...  

To discover therapeutically relevant antibody candidates, many groups use mouse immunization followed by hybridoma generation or B cell screening. One modern approach is to screen B cells by generating natively paired single chain variable fragment (scFv) display libraries in yeast. Such methods typically rely on soluble antigens for scFv library screening. However, many therapeutically relevant cell-surface targets are difficult to express in a soluble protein format, complicating discovery. In this study, we developed methods to screen humanized mouse-derived yeast scFv libraries using recombinant OX40 protein in cell lysate. We used deep sequencing to compare screening with cell lysate to screening with soluble OX40 protein, in the context of mouse immunizations using either soluble OX40 or OX40-expressing cells and OX40-encoding DNA vector. We found that all tested methods produce a unique diversity of scFv binders. However, when we reformatted forty-one of these scFv as full-length monoclonal antibodies (mAbs), we observed that mAbs identified using soluble antigen immunization with cell lysate sorting always bound cell surface OX40, whereas other methods had significant false positive rates. Antibodies identified using soluble antigen immunization and cell lysate sorting were also significantly more likely to activate OX40 in a cellular assay. Our data suggest that sorting with OX40 protein in cell lysate is more likely than other methods to retain the epitopes required for antibody-mediated OX40 agonism.


Sign in / Sign up

Export Citation Format

Share Document