s100 extract
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2000 ◽  
Vol 20 (3) ◽  
pp. 1063-1071 ◽  
Author(s):  
Hong-Xiang Liu ◽  
Shern L. Chew ◽  
Luca Cartegni ◽  
Michael Q. Zhang ◽  
Adrian R. Krainer

ABSTRACT Exonic splicing enhancers (ESEs) are important ciselements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.


2000 ◽  
Vol 20 (1) ◽  
pp. 181-186 ◽  
Author(s):  
Bryan E. Hoffman ◽  
John T. Lis

ABSTRACT B52, an essential SR protein of Drosophila melanogaster, stimulates pre-mRNA splicing in splicing-deficient mammalian S100 extracts. Surprisingly, mutant larvae depleted of B52 were found to be capable of splicing at least several pre-mRNAs tested (H. Z. Ring and J. T. Lis, Mol. Cell. Biol. 14:7499–7506, 1994). In a homologous in vitro system, we demonstrated that B52 complements a Drosophila S100 extract to allow splicing of a Drosophila fushi tarazu(ftz) mini-pre-mRNA. Moreover, Kc cell nuclear extracts that were immunodepleted of B52 lost their ability to splice thisftz pre-mRNA. In contrast, splicing of this sameftz pre-mRNA occurred in whole larvae homozygous for theB52 deletion. Other SR protein family members isolated from these larvae could substitute for B52 splicing activity in vitro. We also observed that SR proteins are expressed variably in different larval tissues. B52 is the predominant SR protein in specific tissues, including the brain. Tissues in which B52 is normally the major SR protein, such as larval brain tissue, failed to produce ftzmRNA in the B52 deletion line. These observations support a model in which the lethality of the B52 deletion strain is a consequence of splicing defects in tissues in which B52 is normally the major SR protein.


1998 ◽  
Vol 18 (8) ◽  
pp. 4924-4934 ◽  
Author(s):  
Johann Soret ◽  
Renata Gattoni ◽  
Cécile Guyon ◽  
Alain Sureau ◽  
Michel Popielarz ◽  
...  

ABSTRACT The highly conserved SR family contains a growing number of phosphoproteins acting as both essential and alternative splicing factors. In this study, we have cloned human genomic and cDNA sequences encoding a novel SR protein designated SRp46. Nucleotide sequence analyses have revealed that the SRp46 gene corresponds to an expressed PR264/SC35 retropseudogene. As a result of mutations and amplifications, the SRp46 protein significantly differs from the PR264/SC35 factor, mainly at the level of its RS domain. Northern and Western blot analyses have established that SRp46 sequences are expressed at different levels in several human cell lines and normal tissues, as well as in simian cells. In contrast, sequences homologous to SRp46 are not present in mice. In vitro splicing studies indicate that the human SRp46 recombinant protein functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. In addition, complementation analyses performed with β-globin or adenovirus E1A transcripts and different splicing-deficient extracts have revealed that SRp46 does not display the same activity as PR264/SC35. These results demonstrate, for the first time, that an SR splicing factor, which represents a novel member of the SR family, is encoded by a functional retropseudogene.


1996 ◽  
Vol 16 (10) ◽  
pp. 5400-5408 ◽  
Author(s):  
W J Zhang ◽  
J Y Wu

The p54 protein was previously identified by its reactivity with an autoantiserum. We report here that p54 is a new member of the SR family of splicing factors, as judged from its structural, antigenic, and functional characteristics. Consistent with its identification as an SR protein, p54 can function as a constitutive splicing factor in complementing splicing-deficient HeLa cell S100 extract. However, p54 also shows properties distinct from those of other SR family members, p54 can directly interact with the 65-kDa subunit of U2 auxiliary factor (U2AF65), a protein associated with the 3' splice site. In addition, p54 interacts with other SR proteins but does not interact with the U1 small nuclear ribonucleoprotein U1-70K or the 35-kDa subunit of U2 auxiliary factor (U2AF35). This protein-protein interaction profile is different from those of prototypical SR proteins SC35 and ASF/SF2, both of which interact with U1-70K and U2AF35 but not with U2AF65. p54 promotes the use of the distal 5' splice site in E1A pre-mRNA alternative splicing, while the same site is suppressed by ASF/SF2 and SC35. These findings and the differential tissue distribution of p54 suggest that this novel SR protein may participate in regulation of alternative splicing in a tissue- and substrate-dependent manner.


1993 ◽  
Vol 13 (7) ◽  
pp. 4023-4028
Author(s):  
A M Zahler ◽  
K M Neugebauer ◽  
J A Stolk ◽  
M B Roth

SR proteins are a family of proteins that have a common epitope recognized by a monoclonal antibody (MAb104) that binds active sites of polymerase II transcription. Four of the SR family members have been shown to restore activity to an otherwise splicing-deficient extract (S100 extract). Here we show that two untested SR proteins, SRp20 and SRp75, can also complement the splicing-deficient extract. We isolated a cDNA encoding SRp75 and found that this protein, like other SR proteins, contains an N-terminal RNA recognition motif (RRM), a glycine-rich region, an internal region homologous to the RRM, and a long (315-amino-acid) C-terminal domain composed predominantly of alternating serine and arginine residues. The apparent molecular mass of dephosphorylated SRp75 is 57 kDa, the size predicted from the cDNA clone. We also detected mobility shifts after dephosphorylating SRp55, SRp40, SRp30a, and SRp30b; the sizes of the shifts are proportional to the length of the SR domain, suggesting that serines in this domain are phosphorylated.


1993 ◽  
Vol 13 (7) ◽  
pp. 4023-4028 ◽  
Author(s):  
A M Zahler ◽  
K M Neugebauer ◽  
J A Stolk ◽  
M B Roth

SR proteins are a family of proteins that have a common epitope recognized by a monoclonal antibody (MAb104) that binds active sites of polymerase II transcription. Four of the SR family members have been shown to restore activity to an otherwise splicing-deficient extract (S100 extract). Here we show that two untested SR proteins, SRp20 and SRp75, can also complement the splicing-deficient extract. We isolated a cDNA encoding SRp75 and found that this protein, like other SR proteins, contains an N-terminal RNA recognition motif (RRM), a glycine-rich region, an internal region homologous to the RRM, and a long (315-amino-acid) C-terminal domain composed predominantly of alternating serine and arginine residues. The apparent molecular mass of dephosphorylated SRp75 is 57 kDa, the size predicted from the cDNA clone. We also detected mobility shifts after dephosphorylating SRp55, SRp40, SRp30a, and SRp30b; the sizes of the shifts are proportional to the length of the SR domain, suggesting that serines in this domain are phosphorylated.


1988 ◽  
Vol 16 (15) ◽  
pp. 7715-7715
Author(s):  
Gudrun Fischer ◽  
Hans J. Gross

1987 ◽  
Vol 7 (9) ◽  
pp. 3131-3137
Author(s):  
A M Kleinschmidt ◽  
T Pederson

The small nuclear RNAs U1, U2, U4, and U5 are cofactors in mRNA splicing and, like the pre-mRNAs with which they interact, are transcribed by RNA polymerase II. Also like mRNAs, mature U1 and U2 RNAs are generated by 3' processing of their primary transcripts. In this study we have investigated the in vitro processing of an SP6-transcribed human U2 RNA precursor, the 3' end of which matches that of authentic human U2 RNA precursor molecules. Although the SP6-U2 RNA precursor was efficiently processed in an ammonium sulfate-fractionated HeLa cytoplasmic S100 extract, the product RNA was unstable. Further purification of the processing activity on glycerol gradients resolved a 7S activity that nonspecifically cleaved all RNAs tested and a 15S activity that efficiently processed the 3' end of pre-U2 RNA. The 15S activity did not process the 3' end of a tRNA precursor molecule. As demonstrated by RNase protection, the processed 3' end of the SP6-U2 RNA maps to the same nucleotides as does mature HeLa U2 RNA.


1987 ◽  
Vol 7 (9) ◽  
pp. 3131-3137 ◽  
Author(s):  
A M Kleinschmidt ◽  
T Pederson

The small nuclear RNAs U1, U2, U4, and U5 are cofactors in mRNA splicing and, like the pre-mRNAs with which they interact, are transcribed by RNA polymerase II. Also like mRNAs, mature U1 and U2 RNAs are generated by 3' processing of their primary transcripts. In this study we have investigated the in vitro processing of an SP6-transcribed human U2 RNA precursor, the 3' end of which matches that of authentic human U2 RNA precursor molecules. Although the SP6-U2 RNA precursor was efficiently processed in an ammonium sulfate-fractionated HeLa cytoplasmic S100 extract, the product RNA was unstable. Further purification of the processing activity on glycerol gradients resolved a 7S activity that nonspecifically cleaved all RNAs tested and a 15S activity that efficiently processed the 3' end of pre-U2 RNA. The 15S activity did not process the 3' end of a tRNA precursor molecule. As demonstrated by RNase protection, the processed 3' end of the SP6-U2 RNA maps to the same nucleotides as does mature HeLa U2 RNA.


1986 ◽  
Vol 6 (9) ◽  
pp. 3117-3127 ◽  
Author(s):  
M S Kasher ◽  
D Pintel ◽  
D C Ward

Plasmid DNA containing the adenovirus type 2 genes for VA RNA was linearized at a site distal to the gene, end labeled with a biotin-nucleotide analog of TTP, and incubated with avidin to form an avidin-biotinylated DNA complex. HeLa cell S100 extracts containing crude RNA polymerase III and transcription factors (TFs) IIIB and IIIC were programmed with the avidin-biotin-VA DNA to allow stable complex formation (A.B. Lassar, P.L. Martin, and R.G. Roeder, Science 222:740-748, 1983). Chromatography of the programmed extract over a biotin-cellulose affinity resin resulted in the selective, and virtually quantitative, retention of one of two stable preinitiation complexes, either VA-IIIC or VA-IIIC-IIIB, depending on the length of template incubation in the S100 extract. After washing the resin with 0.10 M and 0.25 M KCl to remove RNA polymerase III and nonspecifically bound proteins, respectively, TFIIIC was eluted from the VA-IIIC complex by the addition of 1.5 M KCl. The VA-IIIC-IIIB complex exhibited a higher salt stability. Most of TFIIIB and some TFIIIC were released by the addition of 1.5 M KCl; however, the majority of TFIIIC activity was recovered only after a subsequent 3.0 M KCl elution. The specific activity of the TFIIIC in the 3.0 M KCl fraction was 770-fold higher than that in the S100 extract, while the protein content of the 1.5 and 3.0 M KCl fractions was reduced 7,500- and 100,000-fold, respectively.


Sign in / Sign up

Export Citation Format

Share Document