hyperbolic metrics
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Sang-hyun Kim ◽  
Thomas Koberda ◽  
Jaejeong Lee ◽  
Ken’ichi Ohshika ◽  
Ser Peow Tan ◽  
...  

AbstractLet $$\Delta $$ Δ be a hyperbolic triangle with a fixed area $$\varphi $$ φ . We prove that for all but countably many $$\varphi $$ φ , generic choices of $$\Delta $$ Δ have the property that the group generated by the $$\pi $$ π -rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all $$\varphi \in (0,\pi ){\setminus }\mathbb {Q}\pi $$ φ ∈ ( 0 , π ) \ Q π , a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space $$\mathfrak {C}_\theta $$ C θ of singular hyperbolic metrics on a torus with a single cone point of angle $$\theta =2(\pi -\varphi )$$ θ = 2 ( π - φ ) , and answer an analogous question for the holonomy map $$\rho _\xi $$ ρ ξ of such a hyperbolic structure $$\xi $$ ξ . In an appendix by Gao, concrete examples of $$\theta $$ θ and $$\xi \in \mathfrak {C}_\theta $$ ξ ∈ C θ are given where the image of each $$\rho _\xi $$ ρ ξ is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds.


2021 ◽  
Vol 26 (2) ◽  
pp. 37
Author(s):  
Noah Giansiracusa

The voting patterns of the nine justices on the United States Supreme Court continue to fascinate and perplex observers of the Court. While it is commonly understood that the division of the justices into a liberal branch and a conservative branch inevitably drives many case outcomes, there are finer, less transparent divisions within these two main branches that have proven difficult to extract empirically. This study imports methods from evolutionary biology to help illuminate the intricate and often overlooked branching structure of the justices’ voting behavior. Specifically, phylogenetic tree estimation based on voting disagreement rates is used to extend ideal point estimation to the non-Euclidean setting of hyperbolic metrics. After introducing this framework, comparing it to one- and two-dimensional multidimensional scaling, and arguing that it flexibly captures important higher-dimensional voting behavior, a handful of potential ways to apply this tool are presented. The emphasis throughout is on interpreting these judicial trees and extracting qualitative insights from them.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Andriy Haydys ◽  
Bin Xu

A correction to this paper has been published: https://doi.org/10.1007/s00029-021-00643-4


2020 ◽  
pp. 1-47
Author(s):  
RYOKICHI TANAKA

Abstract Weshow that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbolic metrics via mean distortion.


Sign in / Sign up

Export Citation Format

Share Document