foraging modes
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Jennifer R Hodge ◽  
Yutong Song ◽  
Molly A Wightman ◽  
Analisa Milkey ◽  
Binh Tran ◽  
...  

Abstract Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form-function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specialisations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalisable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.


Author(s):  
Gabriel J. Rossi ◽  
Mary E. Power ◽  
Shelley Pneh ◽  
Jason R Neuswanger ◽  
Timothy J. Caldwell

Salmonids frequently adapt their feeding and movement strategies to cope with seasonally fluctuating stream environments. Oncorhynchus mykiss tend to drift-forage in higher velocity habitat than other salmonids, yet their presence in streams with seasonally low velocity and drift suggests behavioral flexibility. We combined 3-D videogrammetry with measurements of invertebrate drift and stream hydraulics to investigate the drivers of O. mykiss foraging mode and movement during the seasonal recession in a California stream. From May to July (2016), foraging movement rate increased as prey concentration and velocity declined; however, movement decreased in August as pools became low and still. In May, 80% of O. mykiss were drift-foraging, while by July, over 70% used search or benthic-foraging modes. Velocity and riffle crest depth were significant predictors of foraging mode, while drift concentration was a poor univariate predictor. However top ranked additive models included both hydraulic variables and drift concentration. A drift-foraging bioenergetic model was a poor predictor of foraging mode. We suggest that infall and benthic prey, as well as risk aversion, may influence late-summer foraging decisions.


2020 ◽  
Vol 65 (10) ◽  
pp. 1752-1764
Author(s):  
Zachary A. Siders ◽  
Robert N. M. Ahrens ◽  
Micheal S. Allen ◽  
Carl J. Walters

2019 ◽  
Vol 66 (1-2) ◽  
pp. 101-112 ◽  
Author(s):  
Aaron M. Ellison

Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory.


2019 ◽  
Vol 66 (1-2) ◽  
pp. 94-100
Author(s):  
Aziz Subach

Abstract The sand viper Cerastes vipera can employ one of two distinct foraging modes, the widely foraging or sit-and-wait mode, depending on the interplay between external and internal factors. Here, I illustrate how tracking methods can be used to evaluate the relative usage of each of the two foraging modes by the sand viper. Foraging theory models generally refer to the time invested in foraging as the main indicator of the energy invested in foraging. I suggest that tracking and counting print marks on trails offer a more precise method of estimating foraging costs in the field. I model the benefits and costs of the viper employing each of the two foraging modes using tracking data, and discuss how it can be used to decipher its foraging mode. I present a measurement approach by which to assess the relative usage of different foraging modes. I contend that the proposed tracking methods and their analysis should prove to be equally applicable to other animals that leave print marks on sand or snow.


2019 ◽  
Vol 129 (2) ◽  
pp. 356-378 ◽  
Author(s):  
Shigeru Nakano ◽  
Kurt D Fausch ◽  
Itsuro Koizumi ◽  
Yoichiro Kanno ◽  
Yoshinori Taniguchi ◽  
...  

Abstract Similar species that overlap in sympatry may diverge in characters related to resource use as a result of evolution or phenotypic plasticity. Dolly Varden charr (Salvelinus malma) and whitespotted charr (S. leucomaenis) overlap along streams in Hokkaido, Japan, and compete by interference for invertebrate drift-foraging positions. Previous research has shown that as drift declines during summer, Dolly Varden shift foraging modes to capture benthic prey, a behaviour facilitated by their subterminal jaw morphology. We compare body and jaw morphology of Dolly Varden in sympatry vs. allopatry in two locations to test for character displacement. Statistical analysis showed significant divergence in characters related to foraging, which was correlated with variation in individual charr diets. Dolly Varden in sympatry had shorter heads and lower jaws than in allopatry, and even within sites charr with these characteristics fed less on drifting terrestrial invertebrates but more on benthic aquatic invertebrates. Those in allopatry had longer heads and lower jaws, and fed more on terrestrial invertebrates. The close proximity of sites in one stream suggests that Dolly Varden may display phenotypic plasticity similar to other charr, allowing rapid responses in morphology to the presence of competitors. These morphological shifts probably help them maintain positive fitness when competing with whitespotted charr in Hokkaido streams.


2018 ◽  
Vol 96 (9) ◽  
pp. 996-1001 ◽  
Author(s):  
Ivana Novcic ◽  
Guy Beauchamp

We examined the influence of the density of foragers on feeding rates of Semipalmated Sandpipers (Calidris pusilla (Linnaeus, 1766)) while using different foraging modes at a spring stopover site in Delaware Bay, USA. Using dynamic estimates of interindividual distances obtained at short intervals of time, we explored how forager density affected feeding rates when Semipalmated Sandpipers used visual pecking or tactile probing. Pecking rate significantly increased with interindividual distances, whereas probe rate was not affected by density. Our study also showed that in fast-moving foragers, such as Semipalmated Sandpipers, in which the number of nearby foragers and distance to the nearest neighbour continuously change throughout the foraging bout, pecking rates are more affected by nearest neighbour distance than by the number of foragers in their immediate vicinity. In addition, our study implies that foragers using different foraging modes might be differently affected by nearby competitors perhaps in response to prey disturbance by neighbours.


2017 ◽  
Author(s):  
Brad J. Gemmell ◽  
Sean P. Colin ◽  
John H. Costello

AbstractRecently, it has been shown that some medusae are capable of swimming very efficiently, i.e.; with a low cost of transport, and that this is in part due to passive energy recapture (PER) which occurs during bell relaxation. We compared the swimming kinematics among a diverse array of medusae, varying in taxonomy, morphology and propulsive and foraging modes, in order to evaluate the prevalence of PER in medusae. We found that while PER is commonly observed among taxa, the magnitude of the contribution to overall swimming varied greatly. The ability of medusae to utilize PER was not related to morphology and swimming performance but was controlled by their swimming kinematics. Utilizing PER required the medusae to pause after bell expansion and individuals could modulate their PER by changing their pause duration. Passive energy recapture can greatly enhance swimming efficiency but there appear to be trade-offs associated with utilizing PER.


Sign in / Sign up

Export Citation Format

Share Document