detailed assessment
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 349)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Gopu Anil ◽  
◽  
Gomasa Ramesh ◽  

The invention of Self Compacting Concrete has been tremendous and continuing growth in the working area over the past decade, culminating in its widespread usage in today’s reality. It outperforms regular cement in application and completion, cost, work reserve funds, and solidity. The addition of strands enhances its qualities, particularly those related to SCC’s post- break behaviour. The goal is to investigate the strength properties of SCC when mixed with various types of strands. Different strand types and filament speeds are among the variables studied. The essential characteristics of SCC, including strength, break energy, sturdiness, and sorptivity, must be controlled. The hydrated design and security development between fiber and blend will be examined using an electron microscope to examine the tiny building of several mixes. 12mm cut glass fiber, carbon fiber, and basalt fiber will be used in the request, as they have been for quite some time. 0.0 percent, 0.1 percent, 0.15 percent, 0.2 percent, 0.25 percent, and 0.3 percent of strands are removed based on volume. The request is broken down into two parts. The first half involves creating a planned blend for SCC of a detailed assessment, such as M30. The second half involves adding filaments such as glass, basalt, and carbon strands to the SCC blends and evaluating and verifying their plastic and hardened properties. The experiment demonstrates a modest improvement in SCC aspects by adding strands of various types and altering the volume. Carbon fiber is the most improved in the more challenging state, followed by Basalt fiber and Glass fiber, and the least improved in the plastic state due to its high-water absorption. Glass fiber fared better in the plastic state. Basalt fiber fared better in the present study regarding cost, appropriate amount, and overall viability.


2022 ◽  
Vol 1 (3) ◽  
pp. 12-19
Author(s):  
Gopu Anil ◽  
◽  
Gomasa Ramesh ◽  

The invention of Self Compacting Concrete has been tremendous and continuing growth in the working area over the past decade, culminating in its widespread usage in today's reality. It outperforms regular cement in application and completion,cost, work reserve funds, and solidity. The addition of strands enhances its qualities, particularly those related to SCC's post- break behaviour. The goal is to investigate the strength properties of SCC when mixed with various types of strands. Different strand types and filament speeds are among the variables studied. The essential characteristics of SCC, including strength, break energy, sturdiness, and sorptivity, must be controlled. The hydrated design and security development between fiber and blend will be examined using an electron microscope to examine the tiny building of several mixes. 12mm cut glass fiber, carbon fiber, and basalt fiber will be used in the request, as they have been for quite some time. 0.0 percent, 0.1 percent, 0.15 percent, 0.2 percent, 0.25 percent, and 0.3 percent of strands are removed based on volume. The request is broken down into two parts. The first half involves creating a planned blend for SCC of a detailed assessment, such as M30. The second half involves adding filaments such as glass, basalt, and carbon strands to the SCC blends and evaluating and verifying their plastic and hardened properties. The experiment demonstrates a modest improvement in SCC aspects by adding strands of various types and altering the volume. Carbon fiber is the most improved in the more challenging state, followed by Basalt fiber and Glass fiber, and the least improved in the plastic state due to its high-water absorption. Glass fiber fared better in the plastic state. Basalt fiber fared better in the present study regarding cost, appropriate amount, and overall viability


2022 ◽  
Vol 3 ◽  
Author(s):  
Angelos Alamanos ◽  
Phoebe Koundouri ◽  
Lydia Papadaki ◽  
Tatiana Pliakou

The Water-Food-Energy Nexus can support a general model of sustainable development, balancing resources with increasing economic/productive expectations, as e.g., in agriculture. We synthesise lessons from Greece's practical and research experience, identify knowledge and application gaps, and propose a novel conceptual framework to tackle these challenges. Thessaly (Central Greece), the country's driest region and largest agricultural supplier is used as an example. The area faces a number of water quantity and quality issues, ambitious production-economic objectives, continuous (historically) drought and flood events, conflicts, administrative and economic issues, under serious climate change impacts. A detailed assessment of the current situation is carried out, covering all these aspects, for the first time in an integrated way. Collaboration gaps among different stakeholders are identified as the biggest impediment to socially acceptable actions. For the first time, to our knowledge, the Nexus is set as a keystone to develop a novel framework to reverse the situation and achieve sustainable management under socially acceptable long-term visions. The proposed framework is based on Systems' Theory, innovation, uses a multi-disciplinary platform to bring together all relevant stakeholders, provides scientific support and commitment, and makes use of technological advances for the system's improvement.


2022 ◽  
Author(s):  
Divyansh Prakash ◽  
Suchitra Mitra ◽  
Morgan Murphy ◽  
Saumen Chakraborty

We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.


2022 ◽  
Author(s):  
Carla Sanchis-Segura ◽  
Naiara Aguirre ◽  
Álvaro Javier Cruz-Gómez ◽  
Sonia Félix ◽  
Cristina Forn

Abstract Previous studies have shown that machine-learning (ML) algorithms can “predict” sex based on brain anatomical/ functional features. The high classification accuracy achieved by ML algorithms is often interpreted as revealing large differences between the brains of males and females and as confirming the existence of “male/female brains”. However, classification and estimation are quite different concepts, and using classification metrics as surrogate estimates of between-group differences results in major statistical and interpretative distortions. The present study illustrates these distortions and provides a novel and detailed assessment of multivariate sex differences in gray matter volume (GMVOL) that does not rely on classification metrics. Moreover, modeling and clustering techniques and analyses of similarities (ANOSIM) were used to identify the brain areas that contribute the most to these multivariate differences, and to empirically assess whether they assemble into two sex-typical profiles. Results revealed that multivariate sex differences in GMVOL: 1) are “large” if not adjusted for total intracranial volume (TIV) variation, but “small” when controlling for this variable; 2) differ in size between individuals and also depends on the ML algorithm used for their calculation 3) do not stem from two sex-typical profiles, and so describing them in terms of “male/female brains” is misleading.


2022 ◽  
Author(s):  
Ogugua Ndubuisi Okonkwo ◽  
Toyin Akanbi ◽  
Chineze Thelma Agweye

Diabetic macular edema is a complication of diabetes mellitus (DM) which contributes significantly to the burden of visual impairment amongst persons living with diabetes. Chronic hyperglycemia triggers a cascade of pathologic changes resulting in breakdown of the retinal blood barrier. Understanding the pathophysiological and biochemical changes occurring in diabetes has led to developing novel therapeutics and effective management strategies for treating DME. The clinical utility of optical coherence tomography (OCT) imaging of the retina provides a detailed assessment of the retina microstructure, valid for individualization of patient treatment and monitoring response to treatment. Similarly, OCT angiography (dye-less angiography), another innovation in imaging of DME, provides an understanding of retinal vasculature in DME. From the earlier years of using retinal laser photocoagulation as the gold standard for treating DME, to the current use of intravitreal injection of drugs, several clinical trials provided evidence on safety and efficacy for the shift to intravitreal steroids and anti-vascular endothelial growth factor use. The short durability of available drugs leading to frequent intravitreal injections and frequent clinic visits for monitoring constitute an enormous burden. Therefore, extended durability drugs are being designed, and remote monitoring of DME may be a solution to the current challenges.


2022 ◽  
Author(s):  
Divyansh Prakash ◽  
Suchitra Mitra ◽  
Morgan Murphy ◽  
Saumen Chakraborty

We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.


2022 ◽  
Author(s):  
Divyansh Prakash ◽  
Suchitra Mitra ◽  
Morgan Murphy ◽  
Saumen Chakraborty

We report a series of de novo designed Artificial Cu Peptides (ArCuPs) that oxidize and peroxygenate C-H bonds of model abiotic substrates via electrochemically generated Cu-oxygen species using H2O2 as the terminal oxidant, akin to native Cu enzymes. Detailed assessment of kinetic parameters established the catalytic nature of the ArCuPs. Selective alteration of outer sphere steric at the d layers above and below the Cu site allows facilitated access of substrates, where a more pronounced effect on catalysis is observed when space is created at the d layer below the Cu site via Ile to Ala mutation producing a kcat of 6.2 s-1, TONmax of 14800 and catalytic proficiency (kcat/KM/kuncat) of 340 M-1 for the oxidation of benzyl alcohol. Independent spectroscopic studied revealed that the rate of formation of the Cu-oxygen species and the spectroscopic feature of the most active variant is distinct compared to the other ArCuPs. Systematic alteration of outer sphere hydrophobicity led to a correlated tuning of the T2 Cu site redox potentials by ~80 mV. The enhanced activity of the ArCuP variant is attributed to a combination of steric effect that allows easy access of substrates, the nature of Cu-oxygen species, and stability of this construct compared to others, where Ile to Ala mutation unexpectedly leads to a higher thermostability which is further augmented by Cu binding.


Author(s):  
Haig Z. Smith

AbstractThis Chapter investigates an extraordinary group of company agents who have often been overlooked, but were ubiquitous in overseas corporate life; the chaplain. It provides a detailed assessment of the daily lives and responsibilities of chaplains. Moreover, it traces how they became important figures of control who policed over the spiritual and earthly lives of personnel in religiously and governmentally diverse environments of India, the Levant and Japan. This chapter examines how corporate chaplains, such as Edward Terry, Edward Pococke and Patrick Copeland, became instrumental figures in establishing corporate authority, and thereby commercial success, in this period. Furthermore, it reveals, through their published works, such as Terry’s, A Voyage to East-India, Lord’s, A display of two forraigne sects and the letters and works of Pococke, the essential role chaplains played in the corporate exchange of ideas and religious knowledge overseas. Finally, this chapter highlights how, throughout much of its existence, the LC and, for a small period, the EIC’s government, helped to inform the flexible process of how companies established corporate governance abroad and how they interacted with peoples, faiths and cultures.


2022 ◽  
Author(s):  
Craig Patrick Barry ◽  
Rosemary Gillane ◽  
Gert Hoy Talbo ◽  
Manuel Plan ◽  
Robin Palfreyman ◽  
...  

The emergence of multidrug-resistant pathogenic bacteria creates a demand for novel antibiotics with distinct mechanisms of action. Advances in next-generation genome sequencing promised a paradigm shift in the quest to...


Sign in / Sign up

Export Citation Format

Share Document