noncyclic subgroup
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


2001 ◽  
Vol 66 (4) ◽  
pp. 1783-1790 ◽  
Author(s):  
Chris Miller

Let ℜ be an expansion of a dense linear order (R, <) without endpoints having the intermediate value property, that is, for all a, b ∈ R, every continuous (parametrically) definable function f: [a, b] → R takes on all values in R between f(a) and f(b). Every expansion of the real line (ℝ, <), as well as every o-minimal expansion of (R, <), has the intermediate value property. Conversely, some nice properties, often associated with expansions of (ℝ, <) or with o-minimal structures, hold for sets and functions definable in ℜ. For example, images of closed bounded definable sets under continuous definable maps are closed and bounded (Proposition 1.10).Of particular interest is the case that ℜ expands an ordered group, that is, ℜ defines a binary operation * such that (R, <, *) is an ordered group. Then (R, *) is abelian and divisible (Proposition 2.2). Continuous nontrivial definable endo-morphisms of (R, *) are surjective and strictly monotone, and monotone nontrivial definable endomorphisms of (R, *) are strictly monotone, continuous and surjective (Proposition 2.4). There is a generalization of the familiar result that every proper noncyclic subgroup of (ℝ, +) is dense and codense in ℝ: If G is a proper nontrivial subgroup of (R, *) definable in ℜ, then either G is dense and codense in R, or G contains an element u such that (R, <, *, e, u, G) is elementarily equivalent to (ℚ, <, +, 0, 1, ℤ), where e denotes the identity element of (R, *) (Theorem 2.3).Here is an outline of this paper. First, we deal with some basic topological results. We then assume that ℜ expands an ordered group and establish the results mentioned in the preceding paragraph. Some examples are then given, followed by a brief discussion of analytic results and possible limitations. In an appendix, an explicit axiomatization (used in the proof of Theorem 2.3) is given for the complete theory of the structure (ℚ, <, +, 0, 1, ℤ).


Sign in / Sign up

Export Citation Format

Share Document