spring steel
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 126)

H-INDEX

22
(FIVE YEARS 5)

Author(s):  
Jun Zhang ◽  
Qi Liu ◽  
Jingsong Zhou ◽  
Aiguo Song

Abstract Chinese mitten crab has unique limb structures composed of a hard exoskeleton and flexible muscles. They enable the crab to locomote adaptively and safely on various terrains. In this work, we investigated the limb structures, motion principle, and gaits of the crab using a high-speed camera and a press machine. Then, a novel compliant robot leg design method is proposed, inspired by the crab limb. The leg comprises six hard scleromeres and a flexible thin-wall spring steel sheet (FSSS) mimicking the exoskeleton and muscle. The scleromeres connected one by one with rotational joints are designed with slots. The front end of the FSSS is fixed on the scleromere close to the ground. The rear end crosses the slots and is mounted at the shaft of a linear actuator installed at the rear scleromere. The leg bends and stretches when the actuator pushes and pulls the FSSS, respectively. The kinematic modeling, rigid-flexible coupling dynamic simulations, and leg prototype tests are conducted, which verify the leg design approach. Thirdly, we put forward a multi-legged robot with eight compliant legs and design its gait using the gaits of the crab. Finally, the robot’s performance is evaluated, including the capabilities of walking on different terrains at adjustable speeds and body heights, traversing low channels, walking on slopes, and carrying loads. The results prove that the single-motor-actuated compliant legs and their dynamic coupling with the rigid robot body frame can enable them to have the ground clearance ability and realize the adaptive walking of the robot. The leg design methodology can be used to design multi-legged robots with the merits of compact, light, low mechanical complexity, high safety, and easy to control, for many applications, such as environmental monitoring, search and rescue.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1612
Author(s):  
Markus Härtel ◽  
Alisa Wilke ◽  
Sebastian Dieck ◽  
Pierre Landgraf ◽  
Thomas Grund ◽  
...  

Over the last years heat treatment concept of “quenching and partitioning” (Q&P) has reached popularity for its ability to precisely adjust material properties to desired values. Mostly, Q&P process are applied on tailor-made materials with high purities or prototype alloys. The research in hand presents the whole routine of how to investigate the potential of a commercial 0.54C-1.45Si-0.71Mn spring steel in terms of Q&P heat treatment from lab scale in dilatometer measurements to widely used inductive heat treatment on larger scale. In order to obtain the small process window for this material we were focusing on the interplay of the formed microstructure and the resulting mechanical properties in hardness measurements, compression tests as well as tensile tests. After full austenitizing, three different Q&P processing routes were applied. Microstructural analyses by optical microscopy, Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD) exhibit a condition with 6.4 % and 15 % volume fraction of fine distributed retained austenite. Interestingly, the 15 % of retained austenite developed during the partitioning heat treatment. Contradictory to our expectations, tensile and compression testing were showing that the 6.4 % condition achieved improved mechanical properties compared to the 15 % retained austenite condition. The remarkable conclusion is that not only volume fraction and fine distribution of retained austenite determines the potential of improving mechanical properties by Q&P in commercial alloys: also the process step when the retained austenite is developing as well as occurring parallel formation of carbides may strongly influence this potential.


2021 ◽  
Vol 2044 (1) ◽  
pp. 012098
Author(s):  
Siming Huang ◽  
Liejun Li ◽  
Zhengwu Peng ◽  
Xianqiang Xing ◽  
Jixiang Gao ◽  
...  

2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Peng-fei Zhang ◽  
De-cheng Wang ◽  
Peng Cheng ◽  
Chen-xi Shao ◽  
Jun-ying Zhou ◽  
...  

The warm deformation behavior of 65Mn spring steel has been carried out by a thermomechanical simulator. The deformation temperatures are in the range of 550 ~ 700℃ and strain rates are in the range of 0.001 ~ 1 s-1. The deformation activation energy is calculated to be 486.829 KJ•mol-1. The strain compensated Arrhenius-type constitutive model was established. The relationship materials constants and strain were fitted with an 8th order polynomial.  It was found that the strain has a significant influence on the instability map. At the strain is 0.3, the optimum flow zone may take place with the deformation temperatures higher than 626 ℃ and strain rate in the range of 0.001 ~ 1 s-1.


Author(s):  
Daniel Chizhik ◽  
Babak Hejrati

Millions of people suffer from a decline in grip strength and hand function due to conditions such as chronic disease, injuries, and aging. Hand function decline results in difficulties with performing activities of daily living, where grasping, lifting, and releasing objects are essential. There is an increasing demand for assistive gloves to enhance users’ hand function and improve their independence. This paper presents the design of a new bidirectional lightweight assistive glove and demonstrates its capabilities through comprehensive experiments using human subjects. The developed glove can provide adequate power augmentation for grasping and releasing objects due to its simple yet effective design using spring steel strips and linear actuators. The glove directly transfers assistive forces to users’ fingertips without any complex intermediate mechanism, and its low weight of 196 g promotes its usability. The rigorous experiment design provided a thorough assessment of the developed glove by accounting for both parameters of size and weight of objects and by including subjects with different hand sizes. To quantify the glove’s performance, the subjects’ muscle activity, their finger and thumb joints’ trajectories, and their grasping forces while using the glove were investigated. The glove could generate the necessary grasping forces to assist with lifting common-household objects. The subjects’ muscle activity significantly decreased when using the glove for object manipulation. The trajectories of the index finger and thumb joints when using the glove were dependent on the size of objects similar to natural unassisted grasping. The obtained results demonstrate the glove’s ability for grip power augmentation of individuals with declining hand strength.


Sign in / Sign up

Export Citation Format

Share Document