optimal spacing
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Qinming Sun ◽  
Bo Zheng ◽  
Tong Liu ◽  
Lekui Zhu ◽  
Xiaoran Hao ◽  
...  

AbstractThe farm-shelter forest network is a complex grid protection system, with a windbreak that is distinctly different from that of the single shelterbelt. We selected the farm-shelter forest network of a jujube field in the Tarim Basin of northwest China and used a combination of field measurements and wind tunnel tests to determine the optimal spacing interval between principal shelterbelts. The wind speed reductive curve of the farm-shelter forest network showed a gradual wind speed tendency to stability. Therefore, a model was established based on the energy transfer balance between the upper and the lower airflows for a steady wind speed. The prediction error of the model was found to be < 1%. The model results indicated that increasing the spacing interval between principal shelterbelts from 10 to 20 H, where H is the shelterbelt height, maintained more than 70% of the windbreak effect of the farm-shelter forest network. If the spacing interval between principal shelterbelts were to be increased from 10 to 20 H, the jujube planting area would be increased by 0.54%. Therefore, a thorough consideration of the windbreak effect of each shelterbelt, the synergistic effects of shelterbelts, the windbreak effects of tall crops, and the effects of temperature and humidity in farm-shelter forest networks indicates that increasing the spacing interval will not only maintain the windbreak effect, but it will also reduce the side effects of shelterbelts, increase the planting area, favor mechanized operation, and improve planting efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Zuo ◽  
Duo Meng ◽  
Jinqi Zhang

This paper investigates the vehicle platoon control problems, in which the road-friction coefficient is taken into consideration. In order to improve the vehicle platoon safety in various road-friction conditions, an optimal spacing policy is proposed for the vehicle platoon. In detail, an intervehicle space optimization framework is developed by using a safety cost function and the gradient decent method. In this way, the optimal intervehicle spacing headway is presented such that the vehicle can be safely driven to the desired platoon under various road-friction conditions. Then, based on the proposed optimal spacing policy, we transform this optimal spacing vehicle platoon control problem into a moving target tracking problem. An adaptive distributed integrated sliding mode (DISM)-based vehicle platoon control scheme is proposed such that the vehicles can effectively follow the presented optimal spacing platoon. Moreover, the stability of the proposed vehicle platoon system is strictly analyzed and numerical simulations are provided to verify the proposed approaches.


2021 ◽  
Author(s):  
Zarmik Moqtaderi ◽  
Susan Brown ◽  
Welcome Bender

Eukaryotic genomes typically show a uniform G + C content among chromosomes, but on smaller scales, many species have a G + C density that fluctuates with a characteristic wavelength. This oscillation is evident in many insect species, with wavelengths ranging between 700 bp and 4 kb. Measures of evolutionary conservation oscillate in phase with G + C content, with conserved regions having higher G + C. Loci with large regulatory regions show more regular oscillations; coding sequences and heterochromatic regions show little or no oscillation. There is little oscillation in vertebrate genomes in regions with densely distributed mobile repetitive elements. However, species with few repeats show oscillation in both G + C density and sequence conservation. These oscillations may reflect optimal spacing of cis-regulatory elements.


2021 ◽  
Vol 861 (4) ◽  
pp. 042002
Author(s):  
Guiwu Han ◽  
Maoding Shen ◽  
Haizhi Zang ◽  
Shaodong Cui

2021 ◽  
Vol 249 ◽  
pp. 329-333
Author(s):  
Evgenii Averin ◽  
Aleksandr Zhabin ◽  
Andrey Polyakov ◽  
Yurii Linnik ◽  
Vladimir Linnik

In the modern theory of rock cutting in production conditions, it is customary to distinguish two large classes of achievable cutting modes – relieved and unrelieved. The kinematics of rock-breaking machines in most cases determines the operation of the cutting tool in both modes in one cycle of the cutting tool. The currently available calculation methods have been developed for a stable, usually unrelieved cutting mode. In this article, the task is set to determine the conditions for the transition between cutting modes and the modernization of the calculation method for determining the forces on the cutting tool. The problem is solved by applying methods of algebraic analysis based on the search for the extremum of the force function on the cutter, depending on the ratio of the real cut spacing to the optimal spacing for the current chip thickness. As a result of solving the problem, an expression is obtained for determining the chip thickness, for which, at the specified parameters, the transition between the relieved and unrelieved cutting modes is provided. The obtained result made it possible to improve the method of calculating the forces on the cutting tool in the areas of the cutter movement with relieved cutting.


Author(s):  
Mukesh Raj Kafle

This paper presents a numerical simulation of recirculating flow patterns in groyne fields. Moreover, it entails the concept determination of proper spacing of vertical unsubmerged and impermeable groynesin seriesto control the bank erosion. Flow pattern between the groynes varies along their space. The flow in groyne field may significantly affect the flow change, bed change, bank erosion and condition of habitat. In this regard, an assessment of flow along the space of groynes will yield important data needed to diversify the object of groyne installation. So, knowledge about determination of the proper spacing of groynes in groyne field is important. Space of vertical groynes was set from 1.5 to 10 times the length of groynes. The velocity field between groynes was simulated by using Computational Fluid Dynamics (CFD) model Nays 2D. Simulated velocity field was compared with existing experimentaldata for the same parameter, which agreed satisfactorily. Based on simulated results,the optimal spacing of vertical groynes to control the bank erosion was recommended.


2021 ◽  
Vol 63 (7) ◽  
pp. 416-421
Author(s):  
R Murshudov ◽  
J M Watson ◽  
C W Liang ◽  
J Sexton ◽  
M Missous

Sensor arrays can significantly increase the speed at which inspections and subsequent imaging of flaws is performed[1]. This work focuses on developing a software approach for optimising the spacing between quantum well Hall-effect (QWHE) magnetic sensors used for magnetic flux leakage (MFL) imaging, where this approach could be adapted for any non-destructive evaluation (NDE) technique in which imaging is obtained. A ground mild steel weld sample containing two surface-breaking flaws prepared by Sonaspection was scanned using an XYZ MFL imaging system developed at the University of Manchester[2,3,13,14]. The scan was taken with an autonomously controlled lift-off height of 0.75 mm, with an x-y measurement step of 100 μm and an applied magnetic field of 30 mT root mean square (RMS) at a frequency of 400 Hz. This data (ie magnetic image) was then processed to simulate different measurement step sizes, to determine any relationship between step size and flaw detectability (flaw signal to weld background response). This work effectively simulates different sensor pitches (separation between sensors) of integrated QWHE sensor arrays from 100 μm to 5 mm, with the goal of determining both the minimum number of sensors required in the array and the optimal spacing to maximise scan speeds and help determine optimum inspection parameters to develop the technology of low-power MFL imaging. This optimisation process could be applied to any NDE imaging system (electromagnetic or other) currently used, with results dependent on the inspection parameters.


2021 ◽  
Author(s):  
Qinming Sun ◽  
Bo Zheng ◽  
Tong Liu ◽  
Lekui Zhu ◽  
Xiaoran Hao ◽  
...  

Abstract The farm-shelter forest network is a complex grid protection system, with a windbreak that is distinctly different from that of the single shelterbelt. We selected the farm-shelter forest network of a jujube field in the Tarim Basin of northwest China and used a combination of field measurements and wind tunnel tests to determine the optimal spacing interval between principal shelterbelts. The wind speed reductive curve of the farm-shelter forest network showed a gradual wind speed tendency to stability. Therefore, a model was established based on the energy transfer balance between the upper and the lower airflows for a steady wind speed. The prediction error of the model was found to be < 1%. The model results indicated that increasing the spacing interval between principal shelterbelts from 10 H to 20 H, where H is the shelterbelt height, maintained more than 70% of the windbreak effect of the farm-shelter forest network. If the spacing interval between principal shelterbelts were to be increased from 10 H to 20 H, the jujube planting area would be increased by 0.54%. Therefore, a thorough consideration of the windbreak effect of each shelterbelt, the synergistic effects of shelterbelts, the windbreak effects of tall crops, and the effects of temperature and humidity in farm-shelter forest networks indicates that increasing the spacing interval will not only maintain the windbreak effect, but it will also reduce the side effects of shelterbelts, increase the planting area, favor mechanized operation, and improve planting efficiency.


2021 ◽  
Author(s):  
Hanshu Zhang ◽  
Joseph Woodworth Houpt

The word superiority effect refers to the phenomenon that people have better recognition of letters presented within words as compared to recognition of isolated letters. Although many previous research on how the spatial relations between letters in words affect the perceptual processing through the inversion paradigm, a significant amount of effort goes into setting the default inter-letter spacing when designing new fonts. Our current research examines the effect of manipulating letter spacing on the processing efficiency, as a measure of the word superiority effect. First, we tested multiple different words instead of fixed word stimuli to show that measures of efficiency can be generalized; second, we disrupted default inter-letter spacing by increasing, decreasing, and randomizing letter spacing to explore the extent to which the efficiency was sustained with the assessment functions. Our results indicate that participants are limited capacity only in the extreme spacing scenario. Additionally, the principle component (PC) analysis shows that highest PC values occur at normal spacing with degradation with increased disruption—spreading or narrowing. These results appear to confirm the configural nature of perceptual processing with normally-spaced words between identifiable tracking and kerning boundaries, and agree well with the ideas about optimal spacing by type designers and typographers implicit in general notion of "rhythmic spacing''. This work is also notable in that we demonstrate the use of assessment functions as a standardized tool for assessing the capacity benefits and efficiency of configural processing.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Veikka Nikander ◽  
Jianguo Wei ◽  
Arto Aho ◽  
Ville Polojarvi ◽  
Antti Tukiainen ◽  
...  

AbstractA numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model. The grid spacing under various operating conditions was assessed for two similar p–n and n–p structures. The key target was finding optimal configuration to achieve the highest conversion efficiency at different temperatures and illumination profiles. The results show that the n–p structure yields wider optimal spacing range and the highest output power. Also, it was found that temperature increase and illumination nonuniformity results in narrower optimal spacing for both structure architectures. Analyzing the current–voltage characteristics, reveals that resistive losses are the dominant loss mechanism bringing restriction in terms of ability to handle nonuniform illumination.


Sign in / Sign up

Export Citation Format

Share Document