lower chordate
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 817-825 ◽  
Author(s):  
S. Glardon ◽  
P. Callaerts ◽  
G. Halder ◽  
W.J. Gehring

The Pax-6 genes of vertebrates and invertebrates encode transcription factors with both a paired domain and a homeodomain. They are expressed in the developing eye and in the central nervous system. Loss-of-function mutations in mammals and in flies result in a reduction or absence of eyes and targeted expression of the Drosophila and the mouse Pax-6 genes induces ectopic eye structures in Drosophila. These findings lead to the proposal that the morphogenesis of the different types of eyes is controlled by a Pax-6-dependent genetic pathway and that the various eye types are of monophyletic origin. We have isolated a Pax-6 homologous gene from the ascidian Phallusia mammillata, because ascidians occupy an important position in early chordate evolution. Furthermore, the Phallusia larva has a simple photosensitive ocellus. Phallusia Pax-6 shares extensive sequence identity and conserved genomic organization with the known Pax-6 genes of vertebrates and invertebrates. Expression of Phallusia Pax-6 is first detected at late gastrula stages in distinct regions of the developing neural plate. At the tailbud stage, it is expressed in the spinal cord and the brain vesicle, where the sensory organs (ocellus and otolith) form, suggesting an important function in their development. Ectopic expression of the ascidian Pax-6 gene in Drosophila leads to the induction of supernumerary eyes indicating a highly conserved gene regulatory function for Pax-6 genes.


1988 ◽  
Vol 197 (3) ◽  
pp. 269-276 ◽  
Author(s):  
Mario Pestarino ◽  
A. Fiala-Medioni ◽  
F. Ravera
Keyword(s):  

1985 ◽  
Vol 101 (2) ◽  
pp. 427-440 ◽  
Author(s):  
E Bartnik ◽  
M Osborn ◽  
K Weber

To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.


Sign in / Sign up

Export Citation Format

Share Document