multiple binding sites
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 31)

H-INDEX

48
(FIVE YEARS 3)

Author(s):  
Leonid Medved ◽  
John W Weisel

Although much has been established concerning the overall structure and function of fibrinogen, much less has been known about its two αC regions, each consisting of an αC-connector and αC-domain, but new information has been accumulating. This review summarizes the state of our current knowledge of the structure and interactions of fibrinogen’s αC regions. A series of studies with isolated αC regions and their fragments demonstrated that the αC-domain forms compact ordered structures consisting of N- and C-terminal sub-domains including β sheets and suggested that the αC-connector has a poly(L-proline) type II structure. Functionally, the αC-domains interact intramolecularly with each other and with the central region of the molecule, first demonstrated by electron microscopy and then quantified by optical trap force spectroscopy. Upon conversion of fibrinogen into fibrin, the αC-domains switch from intra- to intermolecular interactions to form ordered αC polymers. The formation of αC polymers occurs mainly through the homophilic interaction between the N-terminal sub-domains; interaction between the C-terminal sub-domains and the αC-connectors also contributes to this process. Considerable evidence supports the idea that the αC-regions accelerate fibrin polymerization and affect the final structure of fibrin clots. The interactions between αC-regions are important for the mechanical properties of clots, increasing their stiffness and extensibility. Conversion of fibrinogen into fibrin results in exposure of multiple binding sites in its αC regions, providing interaction of fibrin with different proteins and cell types during hemostasis and wound healing. This heretofore mysterious part of the fibrinogen molecule is finally giving up its secrets.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexandra Tsouka ◽  
Kassandra Hoetzel ◽  
Marco Mende ◽  
Jasmin Heidepriem ◽  
Grigori Paris ◽  
...  

Multivalent ligand–protein interactions are a commonly employed approach by nature in many biological processes. Single glycan–protein interactions are often weak, but their affinity and specificity can be drastically enhanced by engaging multiple binding sites. Microarray technology allows for quick, parallel screening of such interactions. Yet, current glycan microarray methodologies usually neglect defined multivalent presentation. Our laser-based array technology allows for a flexible, cost-efficient, and rapid in situ chemical synthesis of peptide scaffolds directly on functionalized glass slides. Using copper(I)-catalyzed azide–alkyne cycloaddition, different monomer sugar azides were attached to the scaffolds, resulting in spatially defined multivalent glycopeptides on the solid support. Studying their interaction with several different lectins showed that not only the spatially defined sugar presentation, but also the surface functionalization and wettability, as well as accessibility and flexibility, play an essential role in such interactions. Therefore, different commercially available functionalized glass slides were equipped with a polyethylene glycol (PEG) linker to demonstrate its effect on glycan–lectin interactions. Moreover, different monomer sugar azides with and without an additional PEG-spacer were attached to the peptide scaffold to increase flexibility and thereby improve binding affinity. A variety of fluorescently labeled lectins were probed, indicating that different lectin–glycan pairs require different surface functionalization and spacers for enhanced binding. This approach allows for rapid screening and evaluation of spacing-, density-, ligand and surface-dependent parameters, to find optimal lectin binders.


2021 ◽  
Vol 22 (21) ◽  
pp. 11456
Author(s):  
Annick N. Enangue Enangue Njembele ◽  
Jacques J. Tremblay

Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengpeng Zhang ◽  
Mingxuan Sheng ◽  
Chunyu Du ◽  
Zhe Chao ◽  
Haixia Xu ◽  
...  

Brown adipose tissue (BAT) is specialized for energy expenditure, thus a better understanding of the regulators influencing BAT development could provide novel strategies to defense obesity. Many protein-coding genes, miRNAs, and lncRNAs have been investigated in BAT development, however, the expression patterns and functions of circRNA in brown adipogenesis have not been reported yet. This study determined the circRNA expression profiles across brown adipogenesis (proliferation, early differentiated, and fully differentiated stages) by RNA-seq. We identified 3,869 circRNAs and 36.9% of them were novel. We found the biogenesis of circRNA was significantly related to linear mRNA transcription, meanwhile, almost 70% of circRNAs were generated by alternative back-splicing. Next, we examined the cell-specific and differentiation stage-specific expression of circRNAs. Compared to white adipocytes, nearly 30% of them were specifically expressed in brown adipocytes. Further, time-series expression analysis showed circRNAs were dynamically expressed, and 117 differential expression circRNAs (DECs) in brown adipogenesis were identified, with 77 upregulated and 40 downregulated. Experimental validation showed the identified circRNAs could be successfully amplified and the expression levels detected by RNA-seq were reliable. For the potential functions of the circRNAs, GO analysis suggested that the decreased circRNAs were enriched in cell proliferation terms, while the increased circRNAs were enriched in development and thermogenic terms. Bioinformatics predictions showed that DECs contained numerous binding sites of functional miRNAs. More interestingly, most of the circRNAs contained multiple binding sites for the same miRNA, indicating that they may facilitate functions by acting as microRNA sponges. Collectively, we characterized the circRNA expression profiles during brown adipogenesis and provide numerous novel circRNAs candidates for future brown adipogenesis regulating studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qing Zhong ◽  
Yanyu Zhao ◽  
Fangfei Ye ◽  
Zaiyu Xiao ◽  
Gaoxingyu Huang ◽  
...  

AbstractWntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1776
Author(s):  
Manuela Marenco ◽  
Letizia Canziani ◽  
Gianluca De Matteis ◽  
Giorgio Cavenaghi ◽  
Carlo Aprile ◽  
...  

Nanoparticles of Human Serum Albumin (NC) labelled with 99mTc are widely used in Nuclear Medicine and represent the gold-standard for the intraoperative detection of the sentinel lymph node in many kinds of cancer, mainly breast cancer and melanoma. A significant amount of radionuclides can be incorporated into the HSA particle, due to the multiple binding sites, and HSA-based nanocolloid catabolism is a fast and easy process that results in innocuous degradation products. NCs labelled with different isotopes represent an interesting radiopharmaceutical for extending diagnostic accuracy and surgical outcome, but the knowledge of the chemical bond between NCs and isotopes has not been fully elucidated, including information on its strength and specificity. The aim of this study is to investigate and compare the physicochemical characteristics of the bond between NCs and 99mTc and 68Ga isotopes. Commercial kits of HSA-based nanocolloid particles (NanoAlbumon®) were used. For this purpose, we have primarily studied the kinetic orders of NC radiolabelling. Langmuir isotherms and pH effect on radiolabelling were tested and the stability of the radiometal complex was verified through competition reactions carried out in presence of different ligands. The future goal of our research is the development of inexpensive and instant kits, easily labelled with a wide spectrum of diagnostic and therapeutic isotopes, thus facilitating the availability of versatile and multipurpose radiopharmaceuticals.


2021 ◽  
Vol 2 (1) ◽  
pp. 375-386
Author(s):  
Chih-Ting Huang ◽  
Yei-Chen Lai ◽  
Szu-Yun Chen ◽  
Meng-Ru Ho ◽  
Yun-Wei Chiang ◽  
...  

Abstract. Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer–dimer equilibrium. Paramagnetic nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy were used to show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans–cis isomerization domain, to interact with these peptides. Dimerization of TF effectively sequesters most of the substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.


2021 ◽  
Vol 556 ◽  
pp. 45-52
Author(s):  
Prachi Deshmukh ◽  
Shubha Markande ◽  
Vikas Fandade ◽  
Yogendra Ramtirtha ◽  
Mallur Srivatsan Madhusudhan ◽  
...  

Reproduction ◽  
2021 ◽  
Vol 161 (5) ◽  
pp. 561-572
Author(s):  
Michala Rosa Birch ◽  
Steen Dissing ◽  
Niels E Skakkebæk ◽  
Anders Rehfeld

Ca2+ signalling controls human sperm functions necessary for successful fertilization. Multiple endocrine-disrupting chemicals have been found to activate the CatSper Ca2+ channel and thereby interfering with Ca2+ signalling in human sperm. Finasteride is prescribed to men in the fertile age to treat hair loss and its use has been associated with impaired male fertility. Due to the structural relatedness of finasteride to the endogenous CatSper ligand progesterone, this study aimed to investigate whether finasteride affects human sperm in a progestogen-like manner. The effect of finasteride on Ca2+ signalling via CatSper in human sperm was investigated in cell suspensions by single-cell imaging. Additionally, effects on sperm penetration into viscous medium and acrosome reaction were assessed. Finasteride alone caused a minor transient rise in the intracellular, free Ca2+ concentration ([Ca2+]i) at physiologically relevant concentrations. Ca2+ signals induced by PGE1 were inhibited by finasteride displaying mixed type of inhibition consistent with multiple binding sites. Finasteride did not interfere with progesterone-induced Ca2+ signalling and no effect on acrosome reaction or sperm viability was found. Finasteride significantly decreased PGE1-induced penetration into viscous medium but in concentrations above what is measured in blood and seminal fluids during regular finasteride administration. In conclusion, the use of finasteride may affect Ca2+ signalling in human sperm through an interaction with the PGE1-binding site, but to which extend it alters the chances of a successful fertilization needs further investigation. It remains to be investigated whether finasteride administration may give rise to side effects by interfering with prostaglandin signalling elsewhere in the human body.


Sign in / Sign up

Export Citation Format

Share Document