protein classes
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Patrick von Aderkas ◽  
Stefan Little ◽  
Massimo Nepi ◽  
Massimo Guarnieri ◽  
Madeline Antony ◽  
...  

AbstractThe composition of fluids that mediate fertilization in cycads is described for the first time. Using tandem mass spectrometry, proteomes of two stages of fluid production, megagametophyte fluid and archegonial chamber fluid production, are compared in Cycas revoluta. These were compared with the proteome of another sexual fluid produced by ovules, the pollination drop proteins. Cycad ovules produce complex liquids immediately prior fertilization. Compared with the pollination drops that mainly had few proteins in classes involved in defense and carbohydrate modification, megagametophyte fluid and archegonial chamber fluid had larger proteomes with many more protein classes, e.g. proteins involved in programmed cell death. Using high-performance liquid chromatography, megagametophyte fluid and archegonial chamber fluid were shown to have elevated concentrations of smaller molecular weight molecules including glucose, pectin and glutamic acid. Compared to megagametophyte fluid, archegonial chamber fluid had elevated pH as well as higher osmolality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandrine Morel ◽  
Sabine Schilling ◽  
Mannekomba R. Diagbouga ◽  
Matteo Delucchi ◽  
Marie-Luce Bochaton-Piallat ◽  
...  

Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs).Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis.Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS.Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs’ architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.


2021 ◽  
Author(s):  
Judith B. Fülle ◽  
Henri Huppert ◽  
David Liebl ◽  
Jaron Liu ◽  
Rogerio Alves de Almeida ◽  
...  

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes – desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with FRAP and FLAP we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from calcium-dependence to calcium-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome down-regulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009828
Author(s):  
Lucienne Tritten ◽  
Cristina Ballesteros ◽  
Robin Beech ◽  
Timothy G. Geary ◽  
Yovany Moreno

Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals and plants. Despite great differences in their life cycles, host preference and transmission modes, these parasites share a common capacity to manipulate their host’s immune system. This is at least partly achieved through the release of excretory/secretory proteins, the most well-characterized component of nematode secretomes, that are comprised of functionally diverse molecules. In this work, we analyzed published protein secretomes of parasitic nematodes to identify common patterns as well as species-specific traits. The 20 selected organisms span 4 nematode clades, including plant pathogens, animal parasites, and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the only component common to all adult secretomes; many other protein classes overlapped across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all parasitic species, but missing from C. elegans. Secretomes from larval stages showed less overlap between species. Although comparison of secretome composition across species and life-cycle stages is challenged by the use of different methods and depths of sequencing among studies, our workflow enabled the identification of conserved protein families and pinpointed elements that may have evolved as to enable parasitism. This strategy, extended to more secretomes, may be exploited to prioritize therapeutic targets in the future.


Planta ◽  
2021 ◽  
Vol 254 (4) ◽  
Author(s):  
Giuseppe Andolfo ◽  
Cristina S. Sánchez ◽  
Joaquìn Cañizares ◽  
Maria B. Pico ◽  
Maria R. Ercolano

Abstract Main conclusion Genome-wide annotation reveals that the gene birth–death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. Abstract The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens. Therefore, the identification of pathogen-recognition genes is of utmost importance for this genus. The major class of plant-resistance (R) genes encodes nucleotide-binding site and leucine-rich repeat (NLR) proteins, and is divided into three sub-classes namely, TIR-NB-LRR (TNL), CC-NB-LRR (CNL) and RPW8-NB-LRR (RNL). Although the characterization of the NLR gene family has been carried out in important Cucurbita species, this information is still linked to the availability of sequenced genomes. In this study, we analyzed 40 de novo transcriptomes and 5 genome assemblies, which were explored to investigate the Cucurbita expressed-NLR (eNLR) and NLR repertoires using an ad hoc gene annotation approach. Over 1850 NLR-encoding genes were identified, finely characterized and compared to 96 well-characterized plant R-genes. The maximum likelihood analyses revealed an unusual diversification of CNL/TNL genes and a strong RNL conservation. Indeed, several gene gain and loss events have shaped the Cucurbita NLR family. Finally, to provide a first validation step Cucurbita, eNLRs were explored by real-time PCR analysis. The NLR repertories of the 12 Cucurbita species presented in this paper will be useful to discover novel R-genes.


2021 ◽  
Vol 22 (18) ◽  
pp. 10089
Author(s):  
Alena Randáková ◽  
Dominik Nelic ◽  
Martina Hochmalová ◽  
Pavel Zimčík ◽  
Mutale Jane Mulenga ◽  
...  

A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.


2021 ◽  
pp. mbc.E21-04-0187
Author(s):  
Katherine A. Sharp ◽  
Mark J. Khoury ◽  
Frederick Wirtz-Peitz ◽  
David Bilder

Scrib, Dlg, and Lgl are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry data set, including all four members of the NURF chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Stella A. Polido ◽  
Janine Kamps ◽  
Jörg Tatzelt

The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Raphaël Méheust ◽  
Shuo Huang ◽  
Rafael Rivera-Lugo ◽  
Jillian F Banfield ◽  
Samuel H Light

Disparate redox activities that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox systems but the breadth of functions of this modification remains unknown. Here we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemical processes. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that implicate functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of 'multi-flavinylated proteins' that may resemble multiheme cytochromes in facilitating longer distance electron transfer. These findings provide key mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 879
Author(s):  
Alla E. Sidorova ◽  
Ekaterina V. Malyshko ◽  
Aleksey O. Lutsenko ◽  
Denis K. Shpigun ◽  
Olga E. Bagrova

The quantitative evaluation of the chirality of macromolecule structures remains one of the exciting issues in biophysics. In this paper, we propose methods for quantitative analysis of the chirality of protein helical and superhelical structures. The analysis of the chirality sign of the protein helical structures (α-helices and -helices) is based on determining the mixed product of every three consecutive vectors between neighboring reference points—α-carbons atoms. The method for evaluating the chirality sign of coiled-coil structures is based on determining the direction and value of the angle between the coiled-coil axis and the α-helices axes. The chirality sign of the coiled coil is calculated by averaging the value of the cosine of the corresponding angle for all helices forming the superhelix. Chirality maps of helical and superhelical protein structures are presented. Furthermore, we propose an analysis of the distributions of helical and superhelical structures in polypeptide chains of several protein classes. The features common to all studied classes and typical for each protein class are revealed. The data obtained, in all likelihood, can reflect considerations about molecular machines as chiral formations.


Sign in / Sign up

Export Citation Format

Share Document