acid pathway
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 166)

H-INDEX

57
(FIVE YEARS 7)

Development ◽  
2022 ◽  
Author(s):  
Vishnu Mishra ◽  
Archita Singh ◽  
Nidhi Gandhi ◽  
Shabari Sarkar Das ◽  
Sandeep Yadav ◽  
...  

Submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates Galactosyltransferase (GALT9) and their expression is inversely affected at 24 hours of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild type and MIM775 Arabidopsis shoot. A similar recovery phenotype of galt9 mutant indicates the role of miR775-GALT9 module in post-submergence recovery. We predicted Golgi-localized GALT9 to be potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29, and ORE1), ethylene signalling (EIN2 and EIN3) and ABA biosynthesis (NCED3) pathway genes in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role of miR775-GALT9 module in post-submergence recovery through a crosstalk with ethylene and ABA pathway.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Shoumin Sun ◽  
Haohao Yan ◽  
Gang Chen ◽  
Shuai Yang ◽  
Jie Wang ◽  
...  

Lentinan (LNT) is a natural and functional polysaccharide isolated from Lentinus edodes fruiting bodies, which functions in stimulating the plant immune response, improving plant disease resistance and regulating plant growth. This study explores the use of LNT as a plant growth regulator and attractant in cotton production. After treatment with LNT, the content of malondialdehyde (MDA) in cotton seeds decreased, whereas the activities of polyphenol oxidase (PPO), superoxide dismutase (SOD) and peroxidase (POD) in leaves increased significantly. LNT also promoted the growth and development of cotton plants and significantly reduced the incidence of cotton damping-off disease. The relative expression of salicylic acid pathway-related genes in cotton also increased significantly. The prevention mechanism of fluopimomide was also evaluated, and the result showed lower EC50 values and was effective in controlling cotton seedling disease caused by Rhizoctonia solani in both greenhouse experiments and field trials. The use of LNT and fluopimomide in controlling cotton seedling damping-off disease showed a synergistic effect in field trials. These results will provide a new insight into the agricultural application of LNT as a biological fungicide in the field of biological controls.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Jun Xu ◽  
Ningyuan Zhang ◽  
Ke Wang ◽  
Qianqian Xian ◽  
Jingping Dong ◽  
...  

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Regina Mencia ◽  
Elina Welchen ◽  
Susann Auer ◽  
Jutta Ludwig-Müller

The clubroot disease (Plasmodiophora brassicae) is one of the most damaging diseases worldwide among brassica crops. Its control often relies on resistant cultivars, since the manipulation of the disease hormones, such as salicylic acid (SA) alters plant growth negatively. Alternatively, the SA pathway can be increased by the addition of beneficial microorganisms for biocontrol. However, this potential has not been exhaustively used. In this study, a recently characterized protein Oxidation Resistant 2 (OXR2) from Arabidopsis thaliana is shown to increase the constitutive pathway of SA defense without decreasing plant growth. Plants overexpressing AtOXR2 (OXR2-OE) show strongly reduced clubroot symptoms with improved plant growth performance, in comparison to wild type plants during the course of infection. Consequently, oxr2 mutants are more susceptible to clubroot disease. P. brassicae itself was reduced in these galls as determined by quantitative real-time PCR. Furthermore, we provide evidence for the transcriptional downregulation of the gene encoding a SA-methyltransferase from the pathogen in OXR2-OE plants that could contribute to the phenotype.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6377
Author(s):  
Chhanda Bose ◽  
Ashly Hindle ◽  
Jihyun Lee ◽  
Jonathan Kopel ◽  
Sahil Tonk ◽  
...  

Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1733
Author(s):  
Caowen Sun ◽  
Shengzuo Fang ◽  
Xulan Shang

Cyclocaryapaliurus leaves are rich in triterpenoids with positive results in the treatment of diabetes, antioxidation, and scavenging free radicals. C. paliurus red leaves have been found to contain higher flavonoids including anthocyanin, however, the triterpenoids accumulation pattern is still unclear. For the purpose of researching the triterpenoid accumulating mechanism during red new leaf development, transcriptome and metabolome analysis was conducted during C. paliurus the red leaf development process. The results uncovered that most triterpenoid ingredients were found to accumulate during leaves turning green, while the unique ingredients content including cyclocaric acid A, cyclocarioside I, cyclocarioside Ⅱand cyclocarioside Ⅲ decreased or remained unchanged. Functional structure genes (hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase, and farnesyl-diphosphate synthase) were identified for promoting triterpenoids accumulation mainly in the mevalonic acid pathway (MVA). Moreover, glycosyltransferase (UGT73C, UGT85A, and UGT85K) was also found attributed to triterpenoids accumulation. These findings provide information for a better understanding of the triterpenoid biosynthesis mechanism during leaf development and will be useful for targeted breeding.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nobuaki Ishihama ◽  
Seung-won Choi ◽  
Yoshiteru Noutoshi ◽  
Ivana Saska ◽  
Shuta Asai ◽  
...  

AbstractNonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2590
Author(s):  
Enriqueta Alós ◽  
Florencia Rey ◽  
José Vicente Gil ◽  
María Jesús Rodrigo ◽  
Lorenzo Zacarias

Citrus fruit is one of the most important contributors to the ascorbic acid (AsA) intake in humans. Here, we report a comparative analysis of AsA content and transcriptional changes of genes related to its metabolism during development of petals, leaves and fruits of Valencia Late oranges (Citrus sinensis). Petals of close flowers and at anthesis contained the highest concentration of AsA. In fruits, AsA content in the flavedo reached a maximum at color break, whereas the pulp accumulated lower levels and experienced minor fluctuations during development. AsA levels in leaves were similar to those in the flavedo at breaker stage. The transcriptional profiling of AsA biosynthetic, degradation, and recycling genes revealed a complex and specific interplay of the different pathways for each tissue. The D-galacturonic acid pathway appeared to be relevant in petals, whereas in leaves the L-galactose pathway (GGP and GME) also contributed to AsA accumulation. In the flavedo, AsA content was positively correlated with the expression of GGP of the L-galactose pathway and negatively with DHAR1 gene of the recycling pathway. In the pulp, AsA appeared to be mainly controlled by the coordination among the D-galacturonic acid pathway and the MIOX and GalDH genes. Analysis of the promoters of AsA metabolism genes revealed a number of cis-acting elements related to developmental signals, but their functionalities remain to be investigated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Hao ◽  
Panpan Lou ◽  
Yidie Han ◽  
Zhehao Chen ◽  
Jianmei Chen ◽  
...  

TCP transcription factors play important roles in diverse aspects of plant development as transcriptional activators or repressors. However, the functional mechanisms of TCPs are not well understood, especially in cotton fibers. Here, we identified a total of 37 non-redundant TCP proteins from the diploid cotton (Gossypium raimondii), which showed great diversity in the expression profile. GrTCP11, an ortholog of AtTCP11, was preferentially expressed in cotton anthers and during fiber initiation and secondary cell wall synthesis stages. Overexpression of GrTCP11 in Arabidopsis thaliana reduced root hair length and delayed flowering. It was found that GrTCP11 negatively regulated genes involved in jasmonic acid (JA) biosynthesis and response, such as AtLOX4, AtAOS, AtAOC1, AtAOC3, AtJAZ1, AtJAZ2, AtMYC2, and AtERF1, which resulted in a decrease in JA concentration in the overexpressed transgenic lines. As with the JA-deficient mutant dde2-2, the transgenic line 4-1 was insensitive to 50 μM methyl jasmonate, compared with the wild-type plants. The results suggest that GrTCP11 may be an important transcription factor for cotton fiber development, by negatively regulating JA biosynthesis and response.


Sign in / Sign up

Export Citation Format

Share Document