enzyme complexes
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 69)

H-INDEX

50
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Julie Vanderstraeten ◽  
Maria João Maurício da Fonseca ◽  
Philippe De Groote ◽  
Dennis Grimon ◽  
Hans Gerstmans ◽  
...  

Abstract Background: Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome. Results: VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers. Conclusion: We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.


2021 ◽  
Author(s):  
Jonathan Dorival ◽  
Sarah Moraïs ◽  
Aurore Labourel ◽  
Bartosz Rozycki ◽  
Pierre A Cazade ◽  
...  

Abstract Background : Natural cellulosome multi-enzyme complexes, their components, and engineered ‘designer cellulosomes’ (DCs) promise an efficient means of breaking down cellulosic substrates into valuable biofuel products. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes but the modular architecture challenges structure determination and rational design.Results: We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specificities, original scaffoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scaffoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution.Conclusion: Our data quantifies variability of form and compactness of cellulosomal components in water and confirms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scaffoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.


2021 ◽  
Author(s):  
Mengru Yang ◽  
Nicolas Wenner ◽  
Gregory Dykes ◽  
Yan Li ◽  
Xiaojun Zhu ◽  
...  

Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both 'Shell first' and 'Cargo first' assembly pathways, unlike the beta-carboxysome structural analog which only involves the 'Cargo first' strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7082
Author(s):  
Matteo Mori ◽  
Stefania Villa ◽  
Samuele Ciceri ◽  
Diego Colombo ◽  
Patrizia Ferraboschi ◽  
...  

The elucidation of the structure of enzymes and their complexes with ligands continues to provide invaluable insights for the development of drugs against many diseases, including bacterial infections. After nearly three decades since the World Health Organization’s (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop optimized molecules with high affinity. This review offers a critical and comprehensive overview of the most recent structural information on traditional and emerging mycobacterial enzymatic targets. A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis of their binding sites, the definition of the structure–activity relationships (SARs) of their inhibitors, and the study of their main intermolecular interactions. This work corroborates the potential of structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and development efforts.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1668
Author(s):  
Jesse D. Moreira ◽  
Deepa M. Gopal ◽  
Darrell N. Kotton ◽  
Jessica L. Fetterman

Mitochondria are specialized organelles involved in energy production that have retained their own genome throughout evolutionary history. The mitochondrial genome (mtDNA) is maternally inherited and requires coordinated regulation with nuclear genes to produce functional enzyme complexes that drive energy production. Each mitochondrion contains 5-10 copies of mtDNA and consequently, each cell has several hundreds to thousands of mtDNAs. Due to the presence of multiple copies of mtDNA in a mitochondrion, mtDNAs with different variants may co-exist, a condition called heteroplasmy. Heteroplasmic variants can be clonally expanded, even in post-mitotic cells, as replication of mtDNA is not tied to the cell-division cycle. Heteroplasmic variants can also segregate during germ cell formation, underlying the inheritance of some mitochondrial mutations. Moreover, the uneven segregation of heteroplasmic variants is thought to underlie the heterogeneity of mitochondrial variation across adult tissues and resultant differences in the clinical presentation of mitochondrial disease. Until recently, however, the mechanisms mediating the relation between mitochondrial genetic variation and disease remained a mystery, largely due to difficulties in modeling human mitochondrial genetic variation and diseases. The advent of induced pluripotent stem cells (iPSCs) and targeted gene editing of the nuclear, and more recently mitochondrial, genomes now provides the ability to dissect how genetic variation in mitochondrial genes alter cellular function across a variety of human tissue types. This review will examine the origins of mitochondrial heteroplasmic variation and propagation, and the tools used to model mitochondrial genetic diseases. Additionally, we discuss how iPSC technologies represent an opportunity to advance our understanding of human mitochondrial genetics in disease.


2021 ◽  
Author(s):  
Alexander B Alleman ◽  
Florence Mus ◽  
John W Peters

Biological nitrogen fixation requires large amounts of energy in the form of ATP and low potential electrons to overcome the high activation barrier for cleavage of the dinitrogen triple bond. The model aerobic nitrogen-fixing bacteria, Azotobacter vinelandii, generates low potential electrons in the form of reduced ferredoxin (Fd) and flavodoxin (Fld) using two distinct mechanisms via the enzyme complexes Rnf and Fix. Both Rnf and Fix are expressed during nitrogen fixation, and deleting either rnf1 or fix genes has little effect on diazotrophic growth. However, deleting both rnf1 and fix eliminates the ability to grow diazotrophically. Rnf and Fix both use NADH as a source of electrons, but overcoming the energetics of NADH's endergonic reduction of Fd/Fld is accomplished through different mechanisms. Rnf harnesses free energy from the proton motive force, whereas Fix uses electron bifurcation to effectively couple the endergonic reduction of Fd/Fld to the exergonic reduction of quinone. Different stoichiometries and gene expression analyses indicate specific roles for the two reactions under different conditions. In this work, complementary physiological studies and thermodynamic modeling reveal how Rnf and Fix simultaneously balance redox homeostasis in various conditions. Specifically, the Fix complex is required for efficient growth under low oxygen concentrations, while Rnf sustains homeostasis and delivers sufficient reduced Fd to nitrogenase under standard conditions. This work provides a framework for understanding how the production of low potential electrons sustains robust nitrogen fixation in various conditions.


2021 ◽  
Author(s):  
Dolonchapa Chakraborty ◽  
Andrew J. Darwin

The Pseudomonas aeruginosa lipoprotein LbcA was discovered because it copurified with and promoted the activity of CtpA, a carboxyl-terminal processing protease (CTP) required for type III secretion system function, and for virulence in a mouse model of acute pneumonia. In this study we explored the role of LbcA by determining its effect on the proteome and its participation in protein complexes. lbcA and ctpA null mutations had strikingly similar effects on the proteome, suggesting that assisting CtpA might be the most impactful role of LbcA in the bacterial cell. Independent complexes containing LbcA and CtpA, or LbcA and substrate, were isolated from P. aeruginosa cells, indicating that LbcA facilitates proteolysis by recruiting the protease and its substrates independently. An unbiased examination of proteins that copurified with LbcA revealed an enrichment for proteins associated with the cell wall. One of these copurification partners was found to be a new CtpA substrate, and the first substrate that is not a peptidoglycan hydrolase. Many of the other LbcA copurification partners are known or predicted peptidoglycan hydrolases. However, some of these LbcA copurification partners were not cleaved by CtpA, and an in vitro assay revealed that while CtpA and all of its substrates bound to LbcA directly, these non-substrates did not. Subsequent experiments suggested that the non substrates might co-purify with LbcA by participating in multi-enzyme complexes containing LbcA-binding CtpA substrates. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are widely conserved and associated with the virulence of several bacteria, including CtpA in Pseudomonas aeruginosa . CtpA copurifies with the uncharacterized lipoprotein, LbcA. This study shows that the most impactful role of LbcA might be to promote CtpA-dependent proteolysis, and that it achieves this as a scaffold for CtpA and its substrates. It also reveals that LbcA copurification partners are enriched for cell wall-associated proteins, one of which is a novel CtpA substrate. Some of the LbcA copurification partners are not cleaved by CtpA, but might copurify with LbcA because they participate in multi-enzyme complexes containing CtpA substrates. These findings are important, because CTPs and their associated proteins affect peptidoglycan remodeling and virulence in multiple species.


2021 ◽  
Author(s):  
Jonathan Przybyla-Toscano ◽  
Andrew E Maclean ◽  
Marina Franceschetti ◽  
Daniela Liebsch ◽  
Florence Vignols ◽  
...  

Plants have evolutionarily conserved NFU-domain proteins that are targeted to plastids or mitochondria. The 'plastid-type' NFU1, NFU2 and NFU3 in Arabidopsis thaliana play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here we confirm that NFU4 and NFU5 are targeted to the mitochondria. The proteins are constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of the proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes and aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth was improved by elevated CO2. In addition, pyruvate, 2-oxoglutarate and branched-chain amino acids accumulated in the nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, in providing Fe-S clusters to lipoyl synthase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Schara Safarian ◽  
Helen K. Opel-Reading ◽  
Di Wu ◽  
Ahmad R. Mehdipour ◽  
Kiel Hards ◽  
...  

AbstractNew drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and proliferation, the cytochrome bd oxidase plays a crucial role for mycobacterial pathophysiology by maintaining aerobic respiration at limited oxygen concentrations. Here, we present the cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 Å. In conjunction with atomistic molecular dynamics (MD) simulation studies we discovered a previously unknown MK-9-binding site, as well as a unique disulfide bond within the Q-loop domain that defines an inactive conformation of the canonical quinol oxidation site in Actinobacteria. Our detailed insights into the long-sought atomic framework of the cytochrome bd oxidase from M. tuberculosis will form the basis for the design of highly specific drugs to act on this enzyme.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jocelin Rizo ◽  
Daniel Guillén ◽  
Gloria Díaz-Ruiz ◽  
Carmen Wacher ◽  
Sergio Encarnación ◽  
...  

Pozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation. The increase in microorganisms correlated with the drop in pH and with the decrease in the contents of carbohydrates, lipids, and nitrogen, which shows that this stage has the highest metabolic activity. Bacterial proteins were mainly represented by those of lactic acid bacteria, and among them, the proteins from genus Streptococcus was overwhelmingly the most abundant. Yeast proteins were present in all the analyzed samples, while proteins from filamentous fungi increased up to 48 h. The metaproteomic approach allowed us to identify several previously unknown enzyme complexes in the system. Additionally, enzymes for hydrolysis of starch, hemicellulose and cellulose were found, indicating that all these substrates can be used as a carbon source by the microbiota. Finally, enzymes related to the production of essential intermediates involved in the synthesis of organic acids, acetoin, butanediol, fatty acids and amino acids important for the generation of compounds that contribute to the sensorial quality of pozol, were found.


Sign in / Sign up

Export Citation Format

Share Document