early flower
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoning Luo ◽  
Daoyang Sun ◽  
Shu Wang ◽  
Sha Luo ◽  
Yaqi Fu ◽  
...  

AbstractTree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, “High Noon” (yellow flowers) and “Roufurong” (purple–red flowers), were sampled at five developmental stages (S1–S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to “Roufurong,” which accumulated abundant anthocyanins at S3–S5, the yellow-colored “High Noon” displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in “High Noon” peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in “High Noon,” whereas most PsFLSs, PsF3Hs, and PsF3’Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in “High Noon.” One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.


2021 ◽  
Vol 22 (15) ◽  
pp. 8128
Author(s):  
Hexuan Wang ◽  
Yahui Yang ◽  
Yiyao Zhang ◽  
Tingting Zhao ◽  
Jingbin Jiang ◽  
...  

Flowering is a morphogenetic process in which angiosperms shift from vegetative growth to reproductive growth. Flowering time has a strong influence on fruit growth, which is closely related to productivity. Therefore, research on crop flowering time is particularly important. To better understand the flowering period of the tomato, we performed transcriptome sequencing of early flower buds and flowers during the extension period in the later-flowering “Moneymaker” material and the earlier-flowering “20965” homozygous inbred line, and we analyzed the obtained data. At least 43.92 million clean reads were obtained from 12 datasets, and the similarity with the tomato internal reference genome was 92.86–94.57%. Based on gene expression and background annotations, 49 candidate genes related to flowering time and flower development were initially screened, among which the greatest number belong to the photoperiod pathway. According to the expression pattern of candidate genes, the cause of early flowering of “20965” is predicted. The modes of action of the differentially expressed genes were classified, and the results show that they are closely related to hormone regulation and participated in a variety of life activities in crops. The candidate genes we screened and the analysis of their expression patterns provide a basis for future functional verification, helping to explore the molecular mechanism of tomato flowering time more comprehensively.


Oecologia ◽  
2021 ◽  
Author(s):  
Benjamin Schwarz ◽  
Carsten F. Dormann ◽  
Diego P. Vázquez ◽  
Jochen Fründ

AbstractTemporal variability of plant–pollinator interactions is important for fully understanding the structure, function, and stability of plant–pollinator networks, but most network studies so far have ignored within-day dynamics. Strong diel dynamics (e.g., a regular daily cycle) were found for networks with Cichorieae, which typically close their flowers around noon. Here, we experimentally prevented early flower closure to test whether these dynamics are driven by the temporally limited availability of Cichorieae, or by timing of pollinator activity. We further tested if the dynamics involving Cichorieae and their pollinators also affect the dynamics on other plants in the network. Finally, we explored the structure of such manipulated networks (with Cichorieae available in the morning and afternoon) compared to unmanipulated controls (Cichorieae available only in the morning). We found that flower closure of Cichorieae is indeed an important driver of diel network dynamics, while other drivers of pollinator timing appeared less important. If Cichorieae flowers were available in the afternoon, they were visited by generalist and specialist pollinators, which overall decreased link turnover between morning and afternoon. Effects of afternoon availability of Cichorieae on other plants in the network were inconclusive: pollinator switching to and from Cichorieae tended to increase. On the level of the aggregated (full-day) network, the treatment resulted in increased dominance of Cichorieae, reducing modularity and increasing plant generality. These results highlight that network dynamics can be predicted by knowledge of diel or seasonal phenology, and that fixed species timing assumptions will misrepresent the expected dynamics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anton Milyaev ◽  
Julian Kofler ◽  
Iris Klaiber ◽  
Stefan Czemmel ◽  
Jens Pfannstiel ◽  
...  

The induction of flower buds in apple (Malus × domestica Borkh.) is tightly connected to biennial bearing, which is characterized by alternating years with high (ON) and low or no (OFF) crop loads. In order to study this irregular cropping behavior, spur buds from ON- and OFF-trees of the biennial-bearing cultivar ‘Fuji’ and the regular bearing cultivar ‘Gala’ were collected. First, the time of flower bud initiation was precisely determined for both cultivars by histological analysis. Moreover, for a systematic understanding of flower bud induction in apple, the physiological and molecular mechanisms within the bud tissue were evaluated over four weeks prior to flower bud initiation by employing a multi-omics approach, including RNA sequencing, proteomic and metabolic profiling. Gene and protein enrichment analysis detected physiological pathways promoting and inhibiting early flower bud development. Metabolic profiles from the cropping treatments revealed a greater abundance of thiamine, chlorogenic acid, and an adenine derivative in spur buds from OFF-trees, whereas tryptophan was more abundant in the buds collected from ON-trees. Cultivar comparison indicated that chlorogenic acid was more abundant in ‘Gala’ than in ‘Fuji’ spur buds, whereas the opposite effect was found for tryptophan. Genes controlling tryptophan biosynthesis were not affected by ON- and OFF-treatments, but genes assigned to the metabolism of tryptophan into indoleacetate were differentially expressed between cultivars and treatments. The multi-omics approach permitted analyzing complex plant metabolic processes involved in early flower bud development and more specifically presumably in flower bud induction by tracing some pathways from gene to product level.


2021 ◽  
Vol 56 (4) ◽  
pp. 540-556.e8 ◽  
Author(s):  
Yassin Refahi ◽  
Argyris Zardilis ◽  
Gaël Michelin ◽  
Raymond Wightman ◽  
Bruno Leggio ◽  
...  

2020 ◽  
Vol 8 (3) ◽  
pp. 194-201
Author(s):  
Bayu Kurniawan ◽  
RC. Hidayat Soesilohadi

Apple is a plant that susceptible toward pests and diseases. Application of pesticide to suppress insect pest population gave negative impact toward natural enemies and insect pollinators. The purpose of this research was to determine the diversity and dominance of insect pests, pollinators, and natural enemies of each phase of apple plant development in conventional plantations in Kota Batu, East Java. This research was conducted in February to May 2016 in each phase of apple growth namely, after defoliation, early flower, late flower, early fruit, and late fruit. Plot size was 10x10 m2 with total 5 plots and total plants in each plot were 60 trees. Collection methods were active collection (hand picking, insect net, and beating tray) and passive collection (yellow trap, pitfall trap, light trap, and stainer trap). Preservation methods used in this research were dry preservatoin and wet preservation. Identification was conducted in Laboratorium of Entomology, Faculty of Biology UGM and Laboratorium Entomology, Zoology Division, Research Centre for Biology Indonesian Institute of Sciences, Cibinong. Data analyzed by using Shannon-Wiener Diversity Index, Simpson Dominance Index and Abundance Formulation. The results showed that total insects that was caught consist of 38 species belong to 9 orders. Diversity index in each phase of apple growth were: after defoliation (0.69), early flower (1.39), late flower (1.86), early fruit (0.66), and late fruit (1.24). Domination index each phase of apple growth were after defoliation (0.50), early flower (0.34), late flower (0.21), early fruit (0.75), and late fruit (0.40). Diversity index of potential insect as pest (1.46), as pollinator (1.29), and as natural enemies (1.18). The highest abundance of insect as pollinator was Apis cerana, as natural enemy was Pantala flavescens, and as pest was Aphis gossypii.


Author(s):  
Wei-Han Chen ◽  
Zhi-Yi Jiang ◽  
Hsing-Fun Hsu ◽  
Chang-Hsien Yang

Abstract Ectopic expression of FOREVER YOUNG FLOWER (FYF) delays floral senescence and abscission in transgenic Arabidopsis. To analyze the FYF function in Phalaenopsis orchids, two FYF-like genes (PaFYF1/2) were identified. PaFYF1/2 were highly expressed in young Phalaenopsis flowers, and their expression decreased significantly afterward until flower senescence. This pattern was strongly correlated with the process of flower senescence and revealed that PaFYF1/2 function to suppress senescence/abscission during early flower development. Interestingly, in flowers, PaFYF1 was consistently expressed less in petals than in lips/sepals, whereas PaFYF2 was expressed relatively evenly in all flower organs. This difference suggests a regulatory modification of the functions of PaFYF1 and PaFYF2 during Phalaenopsis flower evolution. Delayed flower senescence and abscission, which were unaffected by ethylene treatment, were observed in 35S::PaFYF1/2 and 35S::PaFYF1/2 + SRDX transgenic Arabidopsis plants due to the downregulation of the ethylene signaling and abscission-associated genes EDF1-4, IDA and BOP1/2. These results suggest a possible repressor role for Phalaenopsis PaFYF1/2 in controlling floral senescence/abscission by suppressing ethylene signaling and abscission-associated genes. To further validate the function of PaFYF1/2, PaFYF1/2-VIGS (virus-induced gene silencing) Phalaenopsis were generated and analyzed. Promotion of senescence and abscission was observed in PaFYF1/2-VIGS Phalaenopsis flowers by the upregulation of PeEDF1/2, PeSAG39 and PeBOP1/2 expression, the early occurrence of greening according to their increased chlorophyll content and the reduction in water content in flower organs. Our results support that PaFYF1/2 function as transcriptional repressors to prohibit flower senescence and abscission in Phalaenopsis.


Plant Omics ◽  
2020 ◽  
pp. 94-103
Author(s):  
Sung Min Jung ◽  
Youn Young Hur

Gibberellic acid (GA3) treatment is a useful method for inducing seedless grape berries in the seeded grape bunch before flowering. In this work, we applied 100 ppm of GA3 on ‘Tamnara’ grape flower cluster at 14 days before flowering to find metabolites significantly related to seedlessness. Three bunches of grape flower samples were collected at nine different stages (Day before full bloom; DBF13, 10, 7, 5, 2, flowering (0) and day after full bloom; DAF 2, 5, 9). Metabolites of each collected sample were analyzed using GC-MS with derivatization method (MSTFA). Metabolite contents of GA3 treatment flower were compared with non-treated controls in all stages and analyzed using Partial least squares discriminate analysis (PLS-DA). As a result, five sampling times (DBF 13, 10, 2, 0, DAF 9) showed significance differences using GA3 treatments. Total of 13 metabolites were recognized to relate to differences in five specific sampling times and mainly affected the initial stages (DBF 13 and 10). Tartaric acid, D-glucose, phosphoric acid, and D-mannose, inositol were increased by GA3 treatment at the early-flower developing stage. Dehydroascorbic acid, caffeic acid, citric acid, and gluconic acid were mainly increased at the time of GA3 treatment but decreased approaching full bloom. All stages of GA3 treatment, L-glutamine, L-serine, and D-allose was decreased, but fructose increased. In particular, the metabolite contents before GA3 treatment provides new clues on the role of GA3 in the early stage of grape berry development


2020 ◽  
Vol 11 (4) ◽  
pp. 513-519
Author(s):  
R. R. Andreychuk ◽  
V. P. Kolomiychuk ◽  
A. V. Odintsova

The most usual fruit type in the family Саmpanulaсеае is an inferior multi-seeded capsule. In Саmpanula and related genera, A. Kolakovsky determined a new type of capsule, characterized by a specialized organ, axicorn. Some types of axicorn capsules were determined depending on the way of dehiscence. In Campanula, capsule dehiscence is called axicorn-fissuricidal mode, while in Asyneuma – axicorn-valvate mode with scaliformis valves. The precise differences between slit and valve so far have not been identified. In this connection, we performed the study of the inner fruit structure and dehiscence in Asyneuma canescens intending to compare the results with those for Саmpanula species. Anatomical fruit structure was studied under a light microscope on temporary preparations of transversal and longitudinal sections. For the first time, the obtained data provide precise characteristics of the inner fruit morphology, the anatomy of the fruit wall, and dehiscence mode in A. canescens. The survey revealed predominance in the ovary of a synascidiate zone with axile placentation. In the anatomical structure of the fruit wall, there we found a parenchymatous mesocarpium, non-lignified exo- and endocarpium, and lignified elements of fruit – axicorns, located in the small upper part of the septa. Fruit dehiscence in A. canescens occurs in two steps. First, during early flower development, narrow-oval dips are formed on the septum radii; during the fruiting period, a hippocrepiform slit at the lower margin of each dip develops. At this time axicorns detach from the central column of the ovary following a curved direction, meaning the formation of the septifragal slit. During the second stage, the longitudinal slits are formed from the lowest point of the hippocrepiform slit to the fruit base. These slits facilitate seed release from the capsule. Fruit in A. canescens we define as an inferior trilocular syncarpous capsule with two-stage, hippocrepiform and laminar dehiscence. Our study confirms resemblance of anatomical structure and dehiscence mode of fruit in A. canescens and species of the section Rapunculus of the genus Cаmpanula with erect capsules. We consider it inexpedient to accept the new fruit type for A. canescens, because differences compared with species of Cаmpanula are derivative and concern the small size of the axicorn slit and the appearance of additional slits only.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1424
Author(s):  
Dmitry D. Sokoloff ◽  
Shrirang R. Yadav ◽  
Arun N. Chandore ◽  
Margarita V. Remizowa

Eriocaulaceae (Poales) differ from potentially related Xyridaceae in pattern of floral organ arrangement relative to subtending bract (with median sepal adaxial). Some Eriocaulaceae possess reduced and non-trimerous perianth, but developmental data are insufficient. We conducted a SEM investigation of flower development in three species of Eriocaulon to understand whether organ number and arrangement are stable in E. redactum, a species with a highly reduced calyx and reportedly missing corolla of female flowers. Early flower development is similar in all three species. Male and female flowers are indistinguishable at early stages. Despite earlier reports, both floral types uniformly possess three congenitally united sepals and three petals in E. redactum. Petals and inner stamens develop from common primordia. We assume that scanning electron microscopy should be used in taxonomic accounts of Eriocaulon to assess organ number and arrangement. Two types of corolla reduction are found in Eriocaulaceae: suppression and complete loss of petals. Common petal–stamen primordia in Eriocaulon do not co-occur with delayed receptacle expansion as in other monocots but are associated with retarded petal growth. The ‘reverse’ flower orientation of Eriocaulon is probably due to strictly transversal lateral sepals. Gynoecium development indicates similarities of Eriocaulaceae with restiids and graminids rather than with Xyridaceae.


Sign in / Sign up

Export Citation Format

Share Document