atmospheric pressure discharge
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
Yongkang Peng ◽  
Xiaoyue Chen ◽  
Yeqiang Deng ◽  
Lan Lei ◽  
Zhan Haoyu ◽  
...  

Abstract The traditional corona discharge fluid model considers only electrons, positive and negative ions, and the discharge parameters are determined using the simplified weighting method involving the partial pressure ratio. Atmospheric pressure discharge plasma in humid air involves three main neutral gas molecule types: N2, O2, and H2O(g). However, in these conditions, the discharge process involves many types of particles and chemical reactions, and the charge and substance transfer processes are complex. At present, the databases of plasma chemical reaction equations are still expanding based on scholarly research. In this study, we examined the key particles and chemical reactions that substantially influence plasma characteristics. In summarizing the chemical reaction model for the discharge process of N2–O2–H2O(g) mixed gases, 65 particle types and 673 chemical reactions were investigated. On this basis, a global model of atmospheric pressure humid air discharge plasma was developed, with a focus on the variation of charged particles densities and chemical reaction rates with time under the excitation of a 0–200 Td pulsed electric field. Particles with a density greater than 1% of the electron density were classified as key particles. For such particles, the top ranking generation or consumption reactions (i.e., where the sum of their rates was greater than 95% of the total rate of the generation or consumption reactions) were classified as key chemical reactions On the basis of the key particles and reactions identified, a simplified global model was derived. A comparison of the global model with the simplified global model in terms of the model parameters, particle densities, reaction rates (with time), and calculation efficiencies demonstrated that both models can adequately identify the key particles and chemical reactions reflecting the chemical process of atmospheric pressure discharge plasma in humid air. Thus, by analyzing the key particles and chemical reaction pathways, the charge and substance transfer mechanism of atmospheric pressure pulse discharge plasma in humid air was revealed, and the mechanism underlying water vapor molecules’ influence on atmospheric pressure air discharge was elucidated.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012129
Author(s):  
K P Savkin ◽  
D A Sorokin ◽  
E M Oks ◽  
G Yu Yushkov

Abstract The spatial intensity distribution and temporal dynamics of the plasma generated by an atmospheric pressure discharge with magnesium cathode in an argon flow are investigated in a coaxial geometry discharge system. The repetition rate of unipolar pulses was 56 kHz and the pulse duration was 12 μs. The steady-state amplitude of the discharge current was 100 mA at a voltage of about 130 V. Under this operating mode, a local melting of the active cathode surface took place. The evaporated magnesium atoms were captured by the working gas flow and formed a green glow plume around the positive discharge column outside the anode nozzle. The image of the plasma formation was projected onto the entrance slit of the monochromator. The spatial distribution of the radiation intensity and evolution in time of its selected monochromatic components were measured. The radiation spectrum contained groups of ion and magnesium atom lines with wavelengths of 285.21 nm (singlet resonant Mg I); 383.08, 383.36, 383.9 nm (triplet Mg I); 517.3, 517.5, 518.1 nm (triplet Mg I). The results of this work are promising with regard to studying open-type spontaneous radiation sources, as well as the generation of combined gas-metal plasma flows at atmospheric pressure.


Author(s):  
Konstantin P. Savkin ◽  
E M Oks ◽  
Dmitry A Sorokin ◽  
Anatoly Yu. Yushkov ◽  
Georgy Yu. Yushkov ◽  
...  

2020 ◽  
Vol 127 (21) ◽  
pp. 213303
Author(s):  
Konstantin P. Savkin ◽  
Efim Oks ◽  
Georgy Yushkov ◽  
Yurii Ivanov

2020 ◽  
Vol 389 ◽  
pp. 125578
Author(s):  
Konstantin P. Savkin ◽  
Alexey S. Bugaev ◽  
Vasily I. Gushenets ◽  
Alexey G. Nikolaev ◽  
Yury F. Ivanov ◽  
...  

2020 ◽  
Vol 1492 ◽  
pp. 012007
Author(s):  
St Kolev ◽  
Ts Paunska ◽  
G Trenchev ◽  
A Bogaerts

Sign in / Sign up

Export Citation Format

Share Document