ester substrate
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Justin J Miller ◽  
Ishaan T Shah ◽  
Jayda Hatten ◽  
Yasaman Barekatain ◽  
Elizabeth A Mueller ◽  
...  

Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential. While carboxy ester-based prodrug targeting is feasible, it has seen limited use in microbes as microbial esterase specific promoieties have not been described. Here we identify the bacterial esterases, GloB and FrmB, that activate carboxy ester prodrugs in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, ultimately identifying several promoieties likely to be serum esterase-resistant and microbially labile. These studies will enable structure-guided design of anti-staphylococcal promoieties and expand the range of molecules to target staphylococcal pathogens.


2021 ◽  
Author(s):  
Nick Michel ◽  
Racquel Edjoc ◽  
Emmanuel Fagbola ◽  
Jonathan Hughes ◽  
Louis-Charles Campeau ◽  
...  

<p>A nickel-catalyzed reductive cross-coupling of redox-active <i>N</i>-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in pharmaceutical sciences. Mechanistic studies reveal that decarboxylation of the NHP ester to the reactive radical intermediate is accomplished by a combination of a chlorosilane additive and Zn dust. The reaction exhibits a broad scope as many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents.</p>


2021 ◽  
Author(s):  
Nick Michel ◽  
Racquel Edjoc ◽  
Emmanuel Fagbola ◽  
Jonathan Hughes ◽  
Louis-Charles Campeau ◽  
...  

<p>A nickel-catalyzed reductive cross-coupling of redox-active <i>N</i>-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in pharmaceutical sciences. Mechanistic studies reveal that decarboxylation of the NHP ester to the reactive radical intermediate is accomplished by a combination of a chlorosilane additive and Zn dust. The reaction exhibits a broad scope as many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents.</p>


2021 ◽  
Author(s):  
Nick Michel ◽  
Racquel Edjoc ◽  
Emmanuel Fagbola ◽  
Jonathan Hughes ◽  
Louis-Charles Campeau ◽  
...  

<div><p>A nickel-catalyzed reductive cross-coupling of redox-active <i>N</i>-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted a-aryl nitriles, an important scaffold in pharmaceutical sciences. Mechanistic studies reveal that decarboxylation of the NHP ester to the reactive radical intermediate is accomplished by a combination of a chlorosilane additive and Zn dust. The reaction exhibits a broad scope as many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents.</p></div>


2020 ◽  
Author(s):  
Justin Miller ◽  
Ishaan T Shah ◽  
Jayda Hatten ◽  
Yasaman Barekatain ◽  
Elizabeth A Mueller ◽  
...  

Carboxy ester prodrugs have been widely employed as a means to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can successfully mask problematic chemical features that prevent cellular uptake and can be used to target delivery of compounds to specific tissues. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, curbing their potential therapeutic applications. While carboxy ester-based prodrug targeting is feasible, it has been limited in microbes due to a paucity of information about the selectivity of microbial esterases. Here we identify the bacterial esterases, GloB and FrmB, that are required for carboxy ester prodrug activation in Staphylococcus aureus. Additionally, we determine the substrate specificities for FrmB and GloB and demonstrate the structural basis of these preferences. Finally, we establish the carboxy ester substrate specificities of human and mouse sera, identifying several promoieties likely to be serum esterase-resistant while still being microbially labile. These studies lay the groundwork for structure guided design of antistaphyloccal promoieties, enabling a massive expansion of the antistaphyloccal druggable space.


2020 ◽  
Author(s):  
Eric Webb ◽  
John Park ◽  
Erin L. Cole ◽  
David J. Donnelly ◽  
Samuel Bonacorsi, Jr. ◽  
...  

<p>We report a redox-neutral method for nucleophilic fluorination of N-hydroxyphthalimide esters using an Ir photocatalyst under visible light irradiation. The method provides access to a broad range of aliphatic fluorides, including primary, secondary, and tertiary benzylic fluorides as well as unactivated tertiary fluorides, that are typically inaccessible by nucleophilic fluorination due to competing elimination. In addition, we show that the decarboxylative fluorination conditions are readily adapted to radiofluorination with [<sup>18</sup>F]KF. We propose that the reactions proceed by two electron transfers between the Ir catalyst and redox-active ester substrate to afford a carbocation intermediate that undergoes subsequent trapping by fluoride. Examples of trapping with O- and C-centered nucleophiles and deoxyfluorination via N-hydroxyphthalimidoyl oxalates are also presented, suggesting that this approach may offer a general blueprint for affecting redox-neutral SN1 substitutions under mild conditions.</p>


2020 ◽  
Author(s):  
Eric Webb ◽  
John Park ◽  
Erin L. Cole ◽  
David J. Donnelly ◽  
Samuel Bonacorsi, Jr. ◽  
...  

<p>We report a redox-neutral method for nucleophilic fluorination of N-hydroxyphthalimide esters using an Ir photocatalyst under visible light irradiation. The method provides access to a broad range of aliphatic fluorides, including primary, secondary, and tertiary benzylic fluorides as well as unactivated tertiary fluorides, that are typically inaccessible by nucleophilic fluorination due to competing elimination. In addition, we show that the decarboxylative fluorination conditions are readily adapted to radiofluorination with [<sup>18</sup>F]KF. We propose that the reactions proceed by two electron transfers between the Ir catalyst and redox-active ester substrate to afford a carbocation intermediate that undergoes subsequent trapping by fluoride. Examples of trapping with O- and C-centered nucleophiles and deoxyfluorination via N-hydroxyphthalimidoyl oxalates are also presented, suggesting that this approach may offer a general blueprint for affecting redox-neutral SN1 substitutions under mild conditions.</p>


ACS Sensors ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 1295-1304 ◽  
Author(s):  
Joyce C. Breger ◽  
Kimihiro Susumu ◽  
Guillermo Lasarte-Aragonés ◽  
Sebastián A. Díaz ◽  
Jesper Brask ◽  
...  
Keyword(s):  

Molecules ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1211 ◽  
Author(s):  
Oliver Buß ◽  
Moritz Voss ◽  
André Delavault ◽  
Pascal Gorenflo ◽  
Christoph Syldatk ◽  
...  

2015 ◽  
Vol 113 (2) ◽  
pp. E239-E248 ◽  
Author(s):  
Pengxiang Fan ◽  
Abigail M. Miller ◽  
Anthony L. Schilmiller ◽  
Xiaoxiao Liu ◽  
Itai Ofner ◽  
...  

Plant glandular secreting trichomes are epidermal protuberances that produce structurally diverse specialized metabolites, including medically important compounds. Trichomes of many plants in the nightshade family (Solanaceae) produce O-acylsugars, and in cultivated and wild tomatoes these are mixtures of aliphatic esters of sucrose and glucose of varying structures and quantities documented to contribute to insect defense. We characterized the first two enzymes of acylsucrose biosynthesis in the cultivated tomato Solanum lycopersicum. These are type I/IV trichome-expressed BAHD acyltransferases encoded by Solyc12g006330─or S. lycopersicum acylsucrose acyltransferase 1 (Sl-ASAT1)─and Solyc04g012020 (Sl-ASAT2). These enzymes were used—in concert with two previously identified BAHD acyltransferases—to reconstruct the entire cultivated tomato acylsucrose biosynthetic pathway in vitro using sucrose and acyl-CoA substrates. Comparative genomics and biochemical analysis of ASAT enzymes were combined with in vitro mutagenesis to identify amino acids that influence CoA ester substrate specificity and contribute to differences in types of acylsucroses that accumulate in cultivated and wild tomato species. This work demonstrates the feasibility of the metabolic engineering of these insecticidal metabolites in plants and microbes.


Sign in / Sign up

Export Citation Format

Share Document