ferrioxamine receptor
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Derek C K Chan ◽  
Lori L Burrows

Abstract Background Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. Objectives To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. Methods Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. Results The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. Conclusions Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.


2020 ◽  
Author(s):  
Derek C. K. Chan ◽  
Lori L. Burrows

ABSTRACTThiopeptides are a class of Gram-positive antibiotics that inhibit protein synthesis. They have been underutilized as therapeutics due to solubility issues, poor bioavailability, and lack of activity against Gram-negative pathogens. We discovered recently that a member of this family, thiostrepton, has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. Thiostrepton uses pyoverdine siderophore receptors to cross the outer membrane, and combining thiostrepton with an iron chelator yielded remarkable synergy, significantly reducing the minimal inhibitory concentration. These results led to the hypothesis that other thiopeptides could also inhibit growth by using siderophore receptors to gain access to the cell. Here, we screened six thiopeptides for synergy with the iron chelator deferasirox against P. aeruginosa and a mutant lacking the pyoverdine receptors FpvA and FpvB. Our findings suggest that thiopeptides such as thiocillin cross the outer membrane using FoxA, the ferrioxamine siderophore receptor. Other structurally related thiopeptides did not inhibit growth of P. aeruginosa, but had greater potency against methicillin-resistant Staphylococcus aureus than thiostrepton and related thiopeptides. These results suggest that thiopeptide structures have evolved with considerations for target affinity and entry into cells.


1999 ◽  
Vol 12 (5) ◽  
pp. 463-466 ◽  
Author(s):  
Alia Dellagi ◽  
Danièle Reis ◽  
Brigitte Vian ◽  
Dominique Expert

Mutants of Erwinia amylovora CFBP 1430 lacking a functional high-affinity iron transport system mediated by desferrioxamine are impaired in their ability to initiate fire blight symptoms (A. Dellagi, M.-N. Brisset, J.-P. Paulin, and D. Expert. Mol. Plant-Microbe Interact. 11:734–742, 1998). In this study, a chromosomal transcriptional lacZ fusion was used to analyze the expression in planta of the E. amylovora ferrioxamine receptor gene foxR. LacZ activity produced by the strain harboring the fusion was highly induced in iron-restricted conditions and in inoculated apple leaf tissues. Microscopic observation revealed differential expression of this gene in relation to the localization and density of bacterial cells within the diseased tissue. Thus, the ability of bacterial cells to express their iron transport system in accordance with environmental conditions is likely important for disease evolution.


BioMetals ◽  
1996 ◽  
Vol 9 (2) ◽  
Author(s):  
R�my Kachadourian ◽  
Alia Dellagi ◽  
Jacqueline Laurent ◽  
Laurent Bricard ◽  
Gerhard Kunesch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document