ABSTRACT
Given the peculiar and (in spite of many efforts) unexplained quasi-periodic oscillation twin peak phenomena in accretion disc power spectral density observations, the present exploratory analytical article tries to inquire deeper into the relationship between discoseismic modes and the underlying driving turbulence in order to assess its importance. We employ a toy model in the form of a Gaussian white noise-driven damped harmonic oscillator with stochastic frequency. This oscillator represents the discoseismic mode. (Stochastic damping was also considered, but interestingly it was found to be less relevant for the case at hand.) In the context of this model, we find that turbulence interacts with disc oscillations in interesting ways. In particular, the stochastic part in the oscillator frequency behaves as a separate driving agent. This gives rise to 3:2 twin peaks for some values of the physical parameters, which we find. We conclude with the suggestion that the study of turbulence be brought to the forefront of disc oscillation dynamics, as opposed to being a mere background feature. This change of perspective carries immediate observable consequences, such as considerably shifting the values of the (discoseismic) oscillator frequencies.