heat low
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 21 (22) ◽  
pp. 16689-16707
Author(s):  
Ju-Mee Ryoo ◽  
Leonhard Pfister ◽  
Rei Ueyama ◽  
Paquita Zuidema ◽  
Robert Wood ◽  
...  

Abstract. In 2016–2018, the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project undertook 3-month-long deployments to the southeastern (SE) Atlantic Ocean using research aircraft to better understand the impact of biomass burning (BB) aerosol transport to the SE Atlantic Ocean on climate. In this (part 1 of the meteorological overview) paper, the climatological features at monthly timescales are investigated. The southern African easterly jet (AEJ-S), defined as the zonal easterlies over 600–700 hPa exceeding 6 m s−1 around 5–15∘ S, is a characteristic feature of the mid-level circulation over southern Africa that was also during the deployment months of August 2017, September 2016, and October 2018. Climatologically, the AEJ-S develops at lower altitudes (∼ 3 km; 700 hPa) between 5–10∘ S in August, while it develops at around 4 km (∼ 600 hPa) and further south (5–15∘ S) in September and October, largely driven by the strong sensible heating over the African plateau. Notable meteorological anomalous characteristics during the 3 deployment months, compared to climatology (2000–2018), include the following: (1) during August 2017, the AEJ-S was weaker than the climatological mean, with an additional anomalous upper-level jet aloft (∼ 6 km) around 10∘ S. August 2017 was also drier over the SE Atlantic at 600–700 hPa than climatology, with a stronger Benguela low-level jet (LLJ) at 925–950 hPa along the Namibian coast of the SE Atlantic. Consistent with this, the southern Atlantic anticyclone was also stronger and closer to the coast than the August climatological mean. (2) During September 2016, the AEJ-S intensity was similar to the climatological mean, although the heat low and vertical motion over the land was slightly stronger compared to the September climatology. The LLJ and the large-scale southern Atlantic anticyclone were stronger than the climatological mean. (3) During October 2018, the AEJ-S was slightly weaker compared to the climatological mean, as was the LLJ and the southern Atlantic anticyclone. October 2018 was wetter over the Benguela coastal region at 600 hPa than the climatological mean. During all the deployment months, the sea surface temperatures (SST) over the SE Atlantic were warmer than the climatological means, but the monthly mean low cloud fraction was only noticeably reduced in August 2017. A weak August 2017 AEJ-S can explain low offshore black carbon (BC) mixing ratios within the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, although the BC peak altitude, at 2–3 km, is below that of the AEJ-S. The upper-level wave disturbance and the associated anomalous circulation also explain the weakening of AEJ-S through the reduction of the strength of the heat low over the land during August 2017.


2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Nina KUNC ◽  
Valentina SCHMITZER

Roses have an indisputable leading role in private gardens. They also appear in public areas. They are very interesting plants for public urban areas because they represent aesthetic, ecological, tehnical and sociological potential. In public areas varietes are selected according to various criteria such as resistance to heat, low temperatures an drought, repetitive flowering and ease of maintenance. The aim of our study is to present preferences in the selection of groups of roses, their colors, types of plantings, the abudance of roses in planting and the height of individual roses on difrent subtypes of public ans semi-public green areas of the Bežigrad community, Ljubljana. The results of the study showed that the most comomn roses in urban public areas are floribundas. Dominated type of planting is a few plants together in a group. In neighborhoods and block settlements are dominated individual plants. The most common color of roses is red. In urban public areas are planted only roses up to 1 m height. In semi-public areas are also higher roses. The abudance of roses in semi-urban areas varies from 1 to over 30 roses in planting. In urban public areas are most common planting with 10 to 20 roses and those with more than 30 roses.


2021 ◽  
Vol 2 (3) ◽  
pp. 893-912
Author(s):  
Cedric G. Ngoungue Langue ◽  
Christophe Lavaysse ◽  
Mathieu Vrac ◽  
Philippe Peyrillé ◽  
Cyrille Flamant

Abstract. The Saharan heat low (SHL) is a key component of the West African Monsoon system at the synoptic scale and a driver of summertime precipitation over the Sahel region. Therefore, accurate seasonal precipitation forecasts rely in part on a proper representation of the SHL characteristics in seasonal forecast models. This is investigated using the latest versions of two seasonal forecast systems namely the SEAS5 and MF7 systems from the European Center of Medium-Range Weather Forecasts (ECMWF) and Météo-France respectively. The SHL characteristics in the seasonal forecast models are assessed based on a comparison with the fifth ECMWF Reanalysis (ERA5) for the period 1993–2016. The analysis of the modes of variability shows that the seasonal forecast models have issues with the timing and the intensity of the SHL pulsations when compared to ERA5. SEAS5 and MF7 show a cool bias centered on the Sahara and a warm bias located in the eastern part of the Sahara respectively. Both models tend to underestimate the interannual variability in the SHL. Large discrepancies are found in the representation of extremes SHL events in the seasonal forecast models. These results are not linked to our choice of ERA5 as a reference, for we show robust coherence and high correlation between ERA5 and the Modern-Era Retrospective analysis for Research and Applications (MERRA). The use of statistical bias correction methods significantly reduces the bias in the seasonal forecast models and improves the yearly distribution of the SHL and the forecast scores. The results highlight the capacity of the models to represent the intraseasonal pulsations (the so-called east–west phases) of the SHL. We notice an overestimation of the occurrence of the SHL east phases in the models (SEAS5, MF7), while the SHL west phases are much better represented in MF7. In spite of an improvement in prediction score, the SHL-related forecast skills of the seasonal forecast models remain weak for specific variations for lead times beyond 1 month, requiring some adaptations. Moreover, the models show predictive skills at an intraseasonal timescale for shorter lead times.


Author(s):  
Ricardo Fonseca ◽  
Diana Francis ◽  
Narendra Nelli ◽  
Mohan Thota
Keyword(s):  

2021 ◽  
Author(s):  
Cedric G. Ngoungue Langue ◽  
Christophe Lavaysse ◽  
Mathieu Vrac ◽  
Philippe Peyrille ◽  
Cyrille Flamant

Abstract. The Saharan Heat Low (SHL) is a key component of the West African monsoon system at synoptic scale and a driver of summertime precipitation over the Sahel region. Therefore, accurate seasonal precipitation forecasts rely in part on a proper representation of the SHL characteristics in seasonal forecasts models. This is investigated using the last versions of two seasonal forecast systems namely the SEAS5 and MF7 systems respectively from the European Center of Medium range Weather Forecasts (ECMWF) and Meteo-France. The SHL characteristics in the seasonal forecast models is assessed based on a comparison with the fifth ECMWF ReAnalysis (ERA5) for the period 1993–2016. The analysis of the modes of variability shows that the seasonal forecast models have issues with the timing of the SHL pulsations and the intensities when compared to ERA5. SEAS5 and MF7 show a cooling trend centered on the Sahara and a warming trend located in the eastern part of the Sahara, respectively. Both models tend to under-estimate the inter-annual variability of the SHL. We also show that the seasonal forecast models detect the eastward and westward shift of the SHL during the monsoon season. The use of statistical bias correction methods significantly reduces the bias in the seasonal forecast models and improves the forecast score. Despite an improvement of prediction score, the SHL-related forecast skills of SEAS5 and MF7 remain weak for a lead time beyond 1 month.


2021 ◽  
Author(s):  
Cedric G. Ngoungue Langue ◽  
Christophe Lavaysse ◽  
Mathieu Vrac ◽  
Philippe Peyrille ◽  
Cyrille Flamant

2021 ◽  
Author(s):  
Ricardo Fonseca ◽  
Diana Francis ◽  
Narendra Nelli ◽  
Mohan Thota

<p>The climatological state and the seasonal variability of the Arabian Heat Low (AHL) and the Intertropical Discontinuity (ITD) are investigated over the Arabian Peninsula using the 1979-2019 ERA-5 reanalysis data. The AHL is a summertime feature, mostly at 15º-35ºN and 40º-60ºE, exhibiting a clear strengthening over the last four decades in line with the observed increase in surface temperature. However, no clear shift in its position is detected. The AHL has a center over the Arabian Gulf and eastern Arabian Peninsula, co-located with the highest surface temperatures, and another over central Saudi Arabia, driven by low-level wind convergence and subsequent increase in atmospheric thickness. The ITD is the boundary between the hot and dry desert air and the cooler and more moist air from the Arabian Sea. It lies along the Arabian Peninsula’s southern coastline in the cold season but reaches up to 28º N between 50º - 60º E in the summer months. While the former has a rather small diurnal variability, the latter shows daily fluctuations of up to 10º. The ITD exhibited a weak northward migration in the 41-year ERA-5 period, likely driven by the increased sea surface temperatures in the Arabian Sea. On interannual timescales, the El Niño-Southern Oscillation, the Indian Ocean Dipole, and solar-geomagnetic effects play an important role in the AHL’s and ITD’s variability.</p>


2021 ◽  
Author(s):  
Qiong Zhang ◽  
Ellen Berntell ◽  
Qiang Li ◽  
Fredrik Charpentier Ljungqvist

AbstractThere is a well-known mode of rainfall variability associating opposite hydrological conditions over the Sahel region and the Gulf of Guinea, forming a dipole pattern. Previous meteorological observations show that the dipole pattern varies at interannual timescales. Using an EC-Earth climate model simulation for last millennium (850–1850 CE), we investigate the rainfall variability in West Africa over longer timescales. The 1000-year-long simulation data show that this rainfall dipole presents at decadal to multidecadal and centennial variability and long-term trend. Using the singular value decomposition (SVD) analysis, we identified that the rainfall dipole present in the first SVD mode with 60% explained variance and associated with the variabilities in tropical Atlantic sea surface temperature (SST). The second SVD mode shows a monopole rainfall variability pattern centred over the Sahel, associated with the extra-tropical Atlantic SST variability. We conclude that the rainfall dipole-like pattern is a natural variability mode originated from the local ocean–atmosphere-land coupling in the tropical Atlantic basin. The warm SST anomalies in the equatorial Atlantic Ocean favour an anomalous low pressure at the tropics. This low pressure weakens the meridional pressure gradient between the Saharan Heat Low and the tropical Atlantic. It leads to anomalous northeasterly, reduces the southwesterly moisture flux into the Sahel and confines the Gulf of Guinea's moisture convergence. The influence from extra-tropical climate variability, such as Atlantic multidecadal oscillation, tends to modify the rainfall dipole pattern to a monopole pattern from the Gulf of Guinea to Sahara through influencing the Sahara heat low. External forcing—such as orbital forcing, solar radiation, volcanic and land-use—can amplify/dampen the dipole mode through thermal forcing and atmosphere dynamical feedback.


2020 ◽  
pp. 1-51
Author(s):  
Joshua Talib ◽  
Christopher M. Taylor ◽  
Anmin Duan ◽  
Andrew G. Turner

AbstractSubstantial intraseasonal precipitation variability is observed across the Tibetan Plateau (TP) during boreal summer associated with the subtropical jet location and the Silk Road pattern. Weather station data and satellite observations highlight a sensitivity of soil moisture and surface fluxes to this variability. During rain-free periods of two or more days, skin temperatures are shown to rise as the surface dries, signalling decreased evaporative fraction. Surface fluxes are further enhanced by relatively clear skies. In this study we use an atmospheric reanalysis to assess how this surface flux response across the TP influences local and remote conditions.Increased surface sensible heat flux induced by decreased soil moisture during a regional dry event leads to a deepening of the planetary boundary-layer and the development of a heat low. Consistent with previous studies, heat low characteristics exhibit pronounced diurnal variability driven by anomalous daytime surface warming. For example, low-level horizontal winds are weakest during the afternoon and intensify overnight when boundary-layer turbulence is minimal. The heat low favours an upper-tropospheric anticyclone which induces an upper-level Rossby wave and leads to negative upperlevel temperature anomalies across southern China. The Rossby wave intensifies the upper-level cyclonic circulation across central China, whilst upperlevel negative temperature anomalies across south China extends the west Pacific subtropical high westward. These circulation anomalies influence temperature and precipitation anomalies across much of China. The association between land-atmosphere interactions across the TP, large-scale atmospheric circulation characteristics, and precipitation in east Asia highlights the importance of intraseasonal soil moisture dynamics on the TP.


2019 ◽  
Vol 124 (23) ◽  
pp. 13197-13219 ◽  
Author(s):  
U. C. Dumka ◽  
D. G. Kaskaoutis ◽  
D. Francis ◽  
J.‐P. Chaboureau ◽  
A. Rashki ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document