cell surface proteome
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Guopan Liu ◽  
Ming Ho Choi ◽  
Haiying Ma ◽  
Xuejiao Guo ◽  
Pui-Chi Lo ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 265-265
Author(s):  
Francesco Di Meo ◽  
Christina Yu ◽  
Annamaria Cesarano ◽  
Aljoufi Arafat ◽  
Silvia Marino ◽  
...  

Abstract Multiple myeloma (MM) is an incurable malignancy of mature plasma cells. Despite major advances in the therapeutic armamentarium of MM, only 50% of patients survive more than 5 years after diagnosis, with significantly lower rates (21%) for high-risk patients. Chimeric Antigen Receptor (CAR) T-cell therapy targeting BCMA (B-cell maturation antigen) shows high response rates in relapsed/refractory patients. However, most patients have disease remission that lasts less than 18 months, prompting the search for additional and synergistic therapeutic approaches. We unbiasedly mapped the cell surface proteome of MM by integrating Mass-Spectrometry (MS) and RNA-seq analyses from 7 MM cell lines and 904 primary MM patient samples bearing high-risk cytogenetics. To identify cell surface proteins, we ran a pool of 4,761 proteins and 16,000+ transcripts through five repositories. An integrated scoring database was developed by scoring each ID based on the number of databases (0-5) it was identified in, with 0 if the molecule was not found in any and 5 if the protein was found in all five. We identified 402 proteins with a surface score of 3 or higher in MM cell lines and patient samples by transcriptomics and proteomics. We prioritized the 326 candidates that were more highly expressed in patients. Based on functional enrichment analyses, we found the proteins formed three main networks with immune mechanisms representing the largest cluster (227 out of 326 cell surface proteins) followed by transporters and adhesion proteins.Based on a pipeline we previously established (1), we further selected 97 candidates minimally expressed in normal tissues. This list included current therapeutic targets such as BCMA, SLAMF7, ITGB7 and LY9. Validation in primary patient samples by western blot and flow-cytometric analyses, enabled the identification of 10 top candidates (CCR1, CD320, FCRL3, IL12RB1, ITGA4, LAX1, LILRB4, LRRC8D, SEMA4A, SLAMF6) that resulted most frequently and highly expressed. We found that LAX1, LILRB4 and SEMA4A significantly impact myeloma patient overall survival based on Kaplan-Meier analysis in the MM Research Foundation (MMRF) cohort (2). CCR1, IL12RB1, LILRB4 and SEMA4A were upregulated by the treatment with Bortezomib or Venetoclax that conversely, decreased BCMA expression in MM U266 cells. By stratifying the patient population, we found that the SEMA4A and LAX1 were up-regulated in patients with t(4;14) compared to patients with no cytogenetic abnormality; LILRB4 in patients with t(14;16) and CCR1 patients with t(14;16) and t(14;20). By calculating co-expression levels CCR1-LILRB4 and CCR1-FCRL3 resulted co-expressed in 100% of patients. For safety purposes (3), we excluded candidates with high (>55%) protein abundance in highly-purified normal hematopoietic stem cells and activated T-cells, narrowing down the list to 6 top candidates (CCR1, FCRL3, IL12RB1, LILRB4, LRRC8D, SEMA4A). To define the function of this group of promising cell surface targets, we used a CRISPR/Cas9 inducible system in KMS11 MM cells. We found that knock-out of CCR1, LRRC8D and SEMA4A individually reduces the MM cell growth by ~60%, 50% and 50% respectively, and almost completely abrogates MM cell migration through porous chambers by >80%. By co-culturing irradiated KO and control MM cells with healthy donor T-cells we also found that lack of CCR1 increased T-cell proliferation by 50% compared to controls and enhanced killing of MM cells, suggesting that CCR1 may suppress T-cell mediated immune responses in addition to play a role in MM cell survival and migration. This study suggests the contribution of an altered MM surfaceome to disease development and may lead to potential novel immunotherapeutic approaches for high-risk MM. References 1. Perna F et al., Cancer Cell 2017 3. Dong C et al., in press Oncogene 2021 Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 ◽  
pp. S94-S95
Author(s):  
Bonell Patino-Escobar ◽  
Corynn Kasap ◽  
Ian Ferguson ◽  
Martina Hale ◽  
Arun Wiita

2021 ◽  
Author(s):  
Eden Ross

The cell-surface proteome controls numerous cellular functions and is dynamically controlled by endocytosis and recycling under different cellular conditions. Energy stress is a state in which a cell must engage adaptive responses to ensure survival, including remodelling of the cell-surface proteome. AMP-activated protein kinase (AMPK) is an important metabolic regulator in the cell. Recent studies suggest AMPK activation may alter the endocytosis of a few specific proteins. How increased AMPK activity globally regulates the cell surface proteome is not known. I have developed a method to isolate the cell surface proteome from cultured cells. Coupling this method to quantitative mass spectrometry has allowed systematic identification of changes in the cell-surface proteome upon metabolic regulation. I found that activation of AMPK results in robust changes in the cell surface proteome, including cell adhesion and migration proteins. I confirmed that AMPK activation elicits a decrease in the cell surface abundance of the adhesion and migration protein β1-integrin, and that this is correlated with altered function of the endocytosis protein Dab2. Thus, my research furthers our understanding of how AMPK regulates the cell surface proteome and the specific mechanism by which AMPK regulates cellular adhesion and migration.


2021 ◽  
Author(s):  
Antonescu Costin ◽  
Eden Ross ◽  
Rehman Ata ◽  
Thanusi Thavarajah ◽  
Sergei Medvedev ◽  
...  

The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.


2021 ◽  
Author(s):  
Eden Ross

The cell-surface proteome controls numerous cellular functions and is dynamically controlled by endocytosis and recycling under different cellular conditions. Energy stress is a state in which a cell must engage adaptive responses to ensure survival, including remodelling of the cell-surface proteome. AMP-activated protein kinase (AMPK) is an important metabolic regulator in the cell. Recent studies suggest AMPK activation may alter the endocytosis of a few specific proteins. How increased AMPK activity globally regulates the cell surface proteome is not known. I have developed a method to isolate the cell surface proteome from cultured cells. Coupling this method to quantitative mass spectrometry has allowed systematic identification of changes in the cell-surface proteome upon metabolic regulation. I found that activation of AMPK results in robust changes in the cell surface proteome, including cell adhesion and migration proteins. I confirmed that AMPK activation elicits a decrease in the cell surface abundance of the adhesion and migration protein β1-integrin, and that this is correlated with altered function of the endocytosis protein Dab2. Thus, my research furthers our understanding of how AMPK regulates the cell surface proteome and the specific mechanism by which AMPK regulates cellular adhesion and migration.


2021 ◽  
Author(s):  
Antonescu Costin ◽  
Eden Ross ◽  
Rehman Ata ◽  
Thanusi Thavarajah ◽  
Sergei Medvedev ◽  
...  

The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.


2021 ◽  
Vol 93 (10) ◽  
pp. 4542-4551
Author(s):  
Yanan Li ◽  
Yan Wang ◽  
Yating Yao ◽  
Jiawen Lyu ◽  
Qinglong Qiao ◽  
...  

2021 ◽  
Vol 118 (8) ◽  
pp. e2018809118 ◽  
Author(s):  
Amy M. Weeks ◽  
James R. Byrnes ◽  
Irene Lui ◽  
James A. Wells

N terminomics is a powerful strategy for profiling proteolytic neo-N termini, but its application to cell surface proteolysis has been limited by the low relative abundance of plasma membrane proteins. Here we apply plasma membrane-targeted subtiligase variants (subtiligase-TM) to efficiently and specifically capture cell surface N termini in live cells. Using this approach, we sequenced 807 cell surface N termini and quantified changes in their abundance in response to stimuli that induce proteolytic remodeling of the cell surface proteome. To facilitate exploration of our datasets, we developed a web-accessible Atlas of Subtiligase-Captured Extracellular N Termini (ASCENT; http://wellslab.org/ascent). This technology will facilitate greater understanding of extracellular protease biology and reveal neo-N termini biomarkers and targets in disease.


Sign in / Sign up

Export Citation Format

Share Document