heterogeneous nuclear ribonucleoprotein f
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fang Zheng ◽  
Jianing Chen ◽  
Xiaoqian Zhang ◽  
Zifeng Wang ◽  
Jiewen Chen ◽  
...  

AbstractHypoxia-inducible factor-1 (HIF-1) is a master driver of glucose metabolism in cancer cells. Here, we demonstrate that a HIF-1α anti-sense lncRNA, HIFAL, is essential for maintaining and enhancing HIF-1α-mediated transactivation and glycolysis. Mechanistically, HIFAL recruits prolyl hydroxylase 3 (PHD3) to pyruvate kinase 2 (PKM2) to induce its prolyl hydroxylation and introduces the PKM2/PHD3 complex into the nucleus via binding with heterogeneous nuclear ribonucleoprotein F (hnRNPF) to enhance HIF-1α transactivation. Reciprocally, HIF-1α induces HIFAL transcription, which forms a positive feed-forward loop to maintain the transactivation activity of HIF-1α. Clinically, high HIFAL expression is associated with aggressive breast cancer phenotype and poor patient outcome. Furthermore, HIFAL overexpression promotes tumor growth in vivo, while targeting both HIFAL and HIF-1α significantly reduces their effect on cancer growth. Overall, our results indicate a critical regulatory role of HIFAL in HIF-1α-driven transactivation and glycolysis, identifying HIFAL as a therapeutic target for cancer treatment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chao-Sheng Lo ◽  
Kana N. Miyata ◽  
Shuiling Zhao ◽  
Anindya Ghosh ◽  
Shiao-Ying Chang ◽  
...  

Abstract We reported previously that overexpression of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in renal proximal tubular cells (RPTCs) suppresses angiotensinogen (Agt) expression, and attenuates systemic hypertension and renal injury in diabetic Hnrnpf-transgenic (Tg) mice. We thus hypothesized that deletion of Hnrnpf in the renal proximal tubules (RPT) of mice would worsen systemic hypertension and kidney injury, perhaps revealing novel mechanism(s). Tubule-specific Hnrnpf knockout (KO) mice were generated by crossbreeding Pax8-Cre mice with floxed Hnrnpf mice on a C57BL/6 background. Both male and female KO mice exhibited elevated systolic blood pressure, increased urinary albumin/creatinine ratio, tubulo-interstitial fibrosis and glycosuria without changes in blood glucose or glomerular filtration rate compared with control littermates. However, glycosuria disappeared in male KO mice at the age of 12 weeks, while female KO mice had persistent glycosuria. Agt expression was elevated, whereas sodium-glucose co-transporter 2 (Sglt2) expression was down-regulated in RPTs of both male and female KO mice as compared to control littermates. In vitro, KO of HNRNPF in human RPTCs (HK-2) by CRISPR gRNA up-regulated AGT and down-regulated SGLT2 expression. The Sglt2 inhibitor canagliflozin treatment had no effect on Agt and Sglt2 expression in HK-2 and in RPTCs of wild-type mice but induced glycosuria. Our results demonstrate that Hnrnpf plays a role in the development of hypertension and glycosuria through modulation of renal Agt and Sglt2 expression in mice, respectively.


2018 ◽  
Vol 115 (20) ◽  
pp. E4584-E4593 ◽  
Author(s):  
Lingling Fan ◽  
Fengbo Zhang ◽  
Songhui Xu ◽  
Xiaolu Cui ◽  
Arif Hussain ◽  
...  

Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.


Endocrinology ◽  
2017 ◽  
Vol 158 (4) ◽  
pp. 903-919 ◽  
Author(s):  
Anindya Ghosh ◽  
Shaaban Abdo ◽  
Shuiling Zhao ◽  
Chin-Han Wu ◽  
Yixuan Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document