enhanced particle swarm optimization
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 45)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 685
Author(s):  
Hussein M. K. Al-Masri ◽  
Abed A. Al-Sharqi ◽  
Sharaf K. Magableh ◽  
Ali Q. Al-Shetwi ◽  
Maher G. M. Abdolrasol ◽  
...  

This paper aims to investigate a hybrid photovoltaic (PV) biogas on-grid energy system in Al-Ghabawi territory, Amman, Jordan. The system is accomplished by assessing the system’s reliability and economic viability. Realistic hourly measurements of solar irradiance, ambient temperature, municipal solid waste, and load demand in 2020 were obtained from Jordanian governmental entities. This helps in investigating the proposed system on a real megawatt-scale retrofitting power system. Three case scenarios were performed: loss of power supply probability (LPSP) with total net present cost (TNPC), LPSP with an annualized cost of the system (ACS), and TNPC with the index of reliability (IR). Pareto frontiers were obtained using multi-objective feasibility enhanced particle swarm optimization (MOFEPSO) algorithm. The system’s decision variables were the number of PV panels (Npv) and the number of biogas plant working hours per day (tbiogas). Moreover, three non-dominant Pareto frontier solutions are discussed, including reliable, affordable, and best solutions obtained by fuzzy logic. Double-diode (DD) solar PV model was implemented to obtain an accurate sizing of the proposed system. For instance, the best solution of the third case is held at TNPC of 64.504 million USD/yr and IR of 96.048%. These findings were revealed at 33,459 panels and 12.498 h/day. Further, system emissions for each scenario have been tested. Finally, decision makers are invited to adopt to the findings and energy management strategy of this paper to find reliable and cost-effective best solutions.


Author(s):  
Khaled M. Fouad ◽  
Tarek Elsheshtawy ◽  
Mohamed F. Dawood

Support vector regression (SVR) is one of the supervised machine learning algorithms that can be exploited for prediction issues. The main enhancement issue of SVR is attempting to select a reliable parameter to assure the high performance of SVR. In this paper, the intelligent approach is based on integrating the enhanced particle swarm optimization PSO with the SVR to achieve the proper SVR parameters that are used to improve SVR performance. The enhanced PSO is performed by implementing parallelized linear time-variant acceleration coefficients (TVAC) and inertia weight (IW) of PSO, called PLTVACIW-PSO. The proposed approach is evaluated by performing the experimental comparisons of the proposed algorithm with eleven different algorithms. These comparisons are performed by applying the proposed algorithm and these algorithms to 21 different datasets varying in their scales.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1995
Author(s):  
Danshi Sun ◽  
Erhu Wei ◽  
Zhuoxi Ma ◽  
Chenxi Wu ◽  
Shiyi Xu

Indoor navigation has attracted commercial developers and researchers in the last few decades. The development of localization tools, methods and frameworks enables current communication services and applications to be optimized by incorporating location data. For clinical applications such as workflow analysis, Bluetooth Low Energy (BLE) beacons have been employed to map the positions of individuals in indoor environments. To map locations, certain existing methods use the received signal strength indicator (RSSI). Devices need to be configured to allow for dynamic interference patterns when using the RSSI sensors to monitor indoor positions. In this paper, our objective is to explore an alternative method for monitoring a moving user’s indoor position using BLE sensors in complex indoor building environments. We developed a Convolutional Neural Network (CNN) based positioning model based on the 2D image composed of the received number of signals indicator from both x and y-axes. In this way, like a pixel, we interact with each 10 × 10 matrix holding the spatial information of coordinates and suggest the possible shift of a sensor, adding a sensor and removing a sensor. To develop CNN we adopted a neuro-evolution approach to optimize and create several layers in the network dynamically, through enhanced Particle Swarm Optimization (PSO). For the optimization of CNN, the global best solution obtained by PSO is directly given to the weights of each layer of CNN. In addition, we employed dynamic inertia weights in the PSO, instead of a constant inertia weight, to maintain the CNN layers’ length corresponding to the RSSI signals from BLE sensors. Experiments were conducted in a building environment where thirteen beacon devices had been installed in different locations to record coordinates. For evaluation comparison, we further adopted machine learning and deep learning algorithms for predicting a user’s location in an indoor environment. The experimental results indicate that the proposed optimized CNN-based method shows high accuracy (97.92% with 2.8% error) for tracking a moving user’s locations in a complex building without complex calibration as compared to other recent methods.


Sign in / Sign up

Export Citation Format

Share Document