microstructural topology optimization
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanpeng Fang ◽  
Lei Yao ◽  
Shuxia Tian ◽  
Junjian Hou

This paper presents microstructural topology optimization of viscoelastic materials for the plates with constrained layer damping (CLD) treatments. The design objective is to maximize modal loss factor of macrostructures, which is obtained by using the Modal Strain Energy (MSE) method. The microstructure of the viscoelastic damping layer is composed of 3D periodic unit cells. The effective elastic properties of the unit cell are obtained through the strain energy-based method. The density-based topology optimization is adopted to find optimal microstructures of viscoelastic materials. The design sensitivities of modal loss factor with respect to the design variables are analyzed and the design variables are updated by Method of Moving Asymptotes (MMA). Numerical examples are given to demonstrate the validity of the proposed optimization method. The effectiveness of the optimal design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to the plates with CLD treatments.


Sign in / Sign up

Export Citation Format

Share Document