geometric morphology
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 23)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Suli Li ◽  
Kaijue Ma ◽  
Xu Chao ◽  
Yang Gao ◽  
Laixia Yang ◽  
...  

The Laser Thermal-Joule Heating Composite Process was studied by orthogonal tests based on an analysis of fabrication parameters such as the laser power, wire feeding speed, and electric current. Temperature profiles and the geometric morphology of deposited layers under different process parameters were analyzed, and the overlaps between the layers and the substrate were observed. Results show that when the temperature at the bottom layer of the additive manufacturing is higher than the melting point of the substrate, and the highest temperature at the top layer does not exceed the over-firing temperature, good morphology and close bonding with the substrate can be obtained. Finally, appropriate process parameters were identified and verified to print multiple layers continuously.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12239
Author(s):  
Franciele Fernanda Kerniske ◽  
Jonathan Pena Castro ◽  
Luz Elena De la Ossa-Guerra ◽  
Bruna Angelina Mayer ◽  
Vinícius Abilhoa ◽  
...  

Fish populations that reside in completely isolated freshwater ecosystems are rare worldwide. The Vila Velha State Park (VVSP), located in southern Brazil, is recognized for its arenitic formations called sinkholes (furnas), which are completely isolated. Fish populations within, such as those of Psalidodon aff. fasciatus, often develop vertebral malformations due to this isolation from other conspecifics and other species. In this study, we analyzed geometric morphology in digital radiographs to identify congenital deformations of Psalidodon aff. fasciatus in Furna 2 of VVSP. We found many fish with spinal deformities, including wide variation in the number of caudal vertebrae and corporal deformations related to a flattened body and spinal curvature. Females were more affected than males. We also demonstrated that these deformations reflect inbreeding and an absence of gene flow in the population. In conclusion, isolated populations such as fish species in furnas are potential models for evo-devo research.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 233
Author(s):  
Lufeng Luo ◽  
Wentao Liu ◽  
Qinghua Lu ◽  
Jinhai Wang ◽  
Weichang Wen ◽  
...  

Counting grape berries and measuring their size can provide accurate data for robot picking behavior decision-making, yield estimation, and quality evaluation. When grapes are picked, there is a strong uncertainty in the external environment and the shape of the grapes. Counting grape berries and measuring berry size are challenging tasks. Computer vision has made a huge breakthrough in this field. Although the detection method of grape berries based on 3D point cloud information relies on scanning equipment to estimate the number and yield of grape berries, the detection method is difficult to generalize. Grape berry detection based on 2D images is an effective method to solve this problem. However, it is difficult for traditional algorithms to accurately measure the berry size and other parameters, and there is still the problem of the low robustness of berry counting. In response to the above problems, we propose a grape berry detection method based on edge image processing and geometric morphology. The edge contour search and the corner detection algorithm are introduced to detect the concave point position of the berry edge contour extracted by the Canny algorithm to obtain the best contour segment. To correctly obtain the edge contour information of each berry and reduce the error grouping of contour segments, this paper proposes an algorithm for combining contour segments based on clustering search strategy and rotation direction determination, which realizes the correct reorganization of the segmented contour segments, to achieve an accurate calculation of the number of berries and an accurate measurement of their size. The experimental results prove that our proposed method has an average accuracy of 87.76% for the detection of the concave points of the edge contours of different types of grapes, which can achieve a good edge contour segmentation. The average accuracy of the detection of the number of grapes berries in this paper is 91.42%, which is 4.75% higher than that of the Hough transform. The average error between the measured berry size and the actual berry size is 2.30 mm, and the maximum error is 5.62 mm, which is within a reasonable range. The results prove that the method proposed in this paper is robust enough to detect different types of grape berries.


2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications, such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs (aFeOOHs) bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of aGBs in PMCs can be modulated by adjusting the geometric morphology and alignment of α-FeOOHs encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted, and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D printed PMCs with aGBs show promising mechanical reinforcement compared with PMCs without aGBs. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2021 ◽  
Vol 12 (2) ◽  
pp. 803-818
Author(s):  
Miao Gong ◽  
Shijie Dai ◽  
Tao Wang ◽  
Liwen Wang

Abstract. Additive remanufacturing height and matching cooling parameters are the key factors affecting blade repair quality. First, the mathematical model of the single additive remanufacturing repair height and wire-feeding speed was established, the solution method was proposed and the numerical solution was obtained, and the validity of the model was verified by experiments. Then, based on the calculation results of a single additive remanufacturing repair, the geometric morphology of the cross section under double additive remanufacturing repair was analyzed, and the mathematical model was established. Second, based on the optimal parameters obtained by numerical analysis and the mathematical model, the fluid structure coupling heat transfer model of “blade fixture” for base channel cooling was established. The cooling effect of the typical section under different initial temperatures and different flow rates was calculated, and the coupled heat transfer in the process of blade remanufacturing was explained by the mechanism. Third, through the comparative analysis of the cooling effect, optimal cooling parameters of double additive remanufacturing repair were obtained, and the model of coupled heat flow was verified by experiment. The results showed that the mathematical model of additive remanufacturing height is effective for studying the thermal cycle and cooling effect of welding, and the cooling parameters obtained by numerical analysis can effectively guarantee the quality of double additive remanufacturing of blade repair.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Cheng Chen ◽  
Liheng Zheng ◽  
Fucheng Guo ◽  
Zheyu Fang ◽  
Limin Qi

Programing the self-assembly of colloidal nanoparticles into predetermined superstructures represents an attractive strategy to realize functional assemblies and novel nanodevices, but it remains a challenge. Herein, gold nanoarrows (GNAs) showing a distinct convex-concave structure were employed as unique building blocks for programmable self-assembly involving multiple assembly modes. Regioselective adsorption of 1,10-decanedithiol on the vertexes, edges, and facets of GNAs allowed for programmable self-assembly of GNAs with five distinct assembly modes, and regioselective blocking with 1-dodecanethiol followed by adsorption of 1,10-decanedithiol gave rise to programmable self-assembly with six assembly modes including three novel wing-engaged modes. The assembly mode was essentially determined by regioselective adsorption of the dithiol linker dictated by the local curvature together with the shape complementarity of GNAs. This approach reveals how the geometric morphology of nanoparticles affects their regioselective functionalization and drives their self-assembly.


2021 ◽  
Author(s):  
Yingxun Liu ◽  
Yingting Pu ◽  
Xuming Wang ◽  
Xin Wang ◽  
Rui Liao ◽  
...  

The missing-toothed pygmy weasel, Mustela aistoodonnivalis Wu and Kao, 1991, was originally described from Zhouzhi and Zhashui in the Qingling Mountains in Shaanxi province, China. Subsequently it was considered a subspecies of M. nivalis. During a faunal survey of northwest Sichuan, some specimens of M. aistoodonnivalis were collected. Molecular phylogenetic studies showed that M. aistoodonnivalis formed a distinct clade that was sister to M. eriminea based on one mitochondrial gene and six nuclear genes. Morphologically, there was an obvious difference between M. aistoodonnivalis and M. nivalis, especially the lack of the second lower molar. Geometric morphology studies and species delimitation analysis revealed the valid species status of M. aistoodonnivalis. In summary, we confirm that M. aistoodonnivalis is an independent species rather than a subspecies of M. nivalis, and that it is more closely related to Mustela eriminea.


Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of goethite-based fillers in PMCs can be modulated by adjusting the geometric morphology and alignment of mineral particles encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D-printed PMCs with aGBs show promising mechanical reinforcement. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2021 ◽  
Author(s):  
Liu Nannan ◽  
Liu Huamiao ◽  
Ju Yan ◽  
Li Xingan ◽  
Li Yang ◽  
...  

Abstract Background: Exploration of adaptive evolution of organisms in response to environmental change will offer us a hint to the evolutionary history of species and the underlying mechanisms of adaptation to local environments, thus guiding future conservation programmes. Before the introduction of Apis mellifera in China, Apis cerana was the only species, which could be reared in captivity to obtain products. Moreover, A. cerana in Changbai Mountain is the only ecotype in such a flora. Result: We investigated the geometric morphological features of A. cerana in Changbai Mountain by analysing 300 wing specimens from 30 populations of A. cerana in 5 geographic regions. A total of 3,859,573 high-quality SNP loci were yielded via the whole-genome resequencing of 130 individuals from 130 A. cerana geographic populations.Conclusion: Corresponding geometric morphology and population genome confirmed the outstanding evolutionary role of the A. cerana population in Changbai Mountain. Genetic differentiation at the subspecies level exists between populations in Changbai Mountain and remaining geographic regions, and a significant reduction in the effective population size and an excessive degree of inbreeding may be responsible for a substantial loss of population genetic diversity. Candidate genes potentially associated with cold environmental adaptations in populations under natural selection were identified, which may represent local adaptations in populations. Our study provided insights into the evolutionary history and adaptive characteristics of A. cerana in Changbai Mountain, as well as the scientific conservation of this population.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Carlos Andrés Galán-Pinilla ◽  
Luz Amparo Quintero-Ortiz ◽  
Julián Orlando Herrera-Ortiz

This research evaluates the effect of the variables of Phased Array Ultrasonic Testing(PAUT) on the sectoral angular beam scans “S-Scan” and the geometric morphology of planar discontinuities such as the inclination forthe ultrasonic beam and the shape of the extremity on accuracy in measurements. The study was carried out in two stages. Duringthe first stage, eight ASTM A36 steel samples with machined notches by penetration from EDM and a welded sample with lack of penetration in a butt weld were designed and produced. In the second stage, it wasmeasured the size of the discontinuities using ultrasound inspection and different configurations of the phase arrangement. The effect of each variable and inspection setting with errors between 0.2 % and 120 % were determined by statistical analysis.


Sign in / Sign up

Export Citation Format

Share Document