job shops
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 45)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Pramit Shah

Dispatching rules are a popular and commonly researched technique for scheduling tasks in job shops. Much of the past research has looked at the performance of various dispatching rules when a single rule is applied in common to all machines. However, better schedules can frequently be obtained if the machines are allowed to use different rules from one another. This research investigates an intelligent system that selects dispatching rules to use on each machine in the shop, based on a statistical description of the routings, processing times and mix of the jobs to be processed. Randomly generated problems are scheduled using permutations of three different dispatching rules on five machines. A neural network is then trained by using a commercial package to associate the statistical description of each problem with its best solution. Once trained, a network is able to recommend for new problems a dispatching rule to use on each machine. Two networks were trained separately for minimizing makespan and the total flowtime in the job shop. Test results showed that the combination of dispatching rules suggested by the trained networks produced better results for both objectives than the alternative of using the one identical rule on all machines.


2021 ◽  
Author(s):  
Pramit Shah

Dispatching rules are a popular and commonly researched technique for scheduling tasks in job shops. Much of the past research has looked at the performance of various dispatching rules when a single rule is applied in common to all machines. However, better schedules can frequently be obtained if the machines are allowed to use different rules from one another. This research investigates an intelligent system that selects dispatching rules to use on each machine in the shop, based on a statistical description of the routings, processing times and mix of the jobs to be processed. Randomly generated problems are scheduled using permutations of three different dispatching rules on five machines. A neural network is then trained by using a commercial package to associate the statistical description of each problem with its best solution. Once trained, a network is able to recommend for new problems a dispatching rule to use on each machine. Two networks were trained separately for minimizing makespan and the total flowtime in the job shop. Test results showed that the combination of dispatching rules suggested by the trained networks produced better results for both objectives than the alternative of using the one identical rule on all machines.


Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 322-338
Author(s):  
Marvin Carl May ◽  
Alexander Albers ◽  
Marc David Fischer ◽  
Florian Mayerhofer ◽  
Louis Schäfer ◽  
...  

Currently, manufacturing is characterized by increasing complexity both on the technical and organizational levels. Thus, more complex and intelligent production control methods are developed in order to remain competitive and achieve operational excellence. Operations management described early on the influence among target metrics, such as queuing times, queue length, and production speed. However, accurate predictions of queue lengths have long been overlooked as a means to better understanding manufacturing systems. In order to provide queue length forecasts, this paper introduced a methodology to identify queue lengths in retrospect based on transitional data, as well as a comparison of easy-to-deploy machine learning-based queue forecasting models. Forecasting, based on static data sets, as well as time series models can be shown to be successfully applied in an exemplary semiconductor case study. The main findings concluded that accurate queue length prediction, even with minimal available data, is feasible by applying a variety of techniques, which can enable further research and predictions.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 145
Author(s):  
Mingming Xu ◽  
Shuning Zhang ◽  
Guanlong Deng

When no-wait constraint holds in job shops, a job has to be processed with no waiting time from the first to the last operation, and the start time of a job is greatly restricted. Using key elements of the iterated greedy algorithm, this paper proposes a population-based iterated greedy (PBIG) algorithm for finding high-quality schedules in no-wait job shops. Firstly, the Nawaz–Enscore–Ham (NEH) heuristic used for flow shop is extended in no-wait job shops, and an initialization scheme based on the NEH heuristic is developed to generate start solutions with a certain quality and diversity. Secondly, the iterated greedy procedure is introduced based on the destruction and construction perturbator and the insert-based local search. Furthermore, a population-based co-evolutionary scheme is presented by imposing the iterated greedy procedure in parallel and hybridizing both the left timetabling and inverse left timetabling methods. Computational results based on well-known benchmark instances show that the proposed algorithm outperforms two existing metaheuristics by a significant margin.


2021 ◽  
Author(s):  
Bing Yan ◽  
Mikhail Bragin ◽  
Peter Luh

<p></p><p>Job shops are an important production environment for low-volume high-variety manufacturing.<i> </i>Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming methods without much difficulty. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the linear problem after relaxing binary requirements. These vertices are then converted to tight constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. </p><p></p>


Sign in / Sign up

Export Citation Format

Share Document