keyhole behavior
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 4)

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5307
Author(s):  
Feipeng An ◽  
Qilong Gong ◽  
Guoxiang Xu ◽  
Tan Zhang ◽  
Qingxian Hu ◽  
...  

Considering the coupling of a droplet, keyhole, and molten pool, a three-dimensional transient model for the full penetration laser + metal inert gas (MIG) hybrid welding of thin copper alloy plate was established, which is able to simulate the temperature and velocity fields, keyhole behavior, and generation of the welding defect. Based on the experimental and simulation results, the weld formation mechanism for the hybrid butt welding of a 2 mm-thick copper alloy plate was comparatively studied in terms of the fluid dynamic feature of the melt pool. For single laser welding, the dynamic behavior of liquid metal near the rear keyhole wall is complex, and the keyhole has a relatively drastic fluctuation. An obvious spattering phenomenon occurs at the workpiece backside. Meanwhile, the underfill (or undercut) defect is formed at both the top and bottom surfaces of the final weld bead, and the recoil pressure is identified as the main factor. In hybrid welding, a downward fluid flow is strengthened on the rear keyhole wall, and the stability of the keyhole root is enhanced greatly. There are large and small clockwise vortexes emerging in the upper and lower parts of the molten pool, respectively. A relatively stable metal bulge can be produced at the weld pool backside. The formation defects are suppressed effectively, increasing the reliability of full penetration butt welding of the thin copper alloy plate.


2020 ◽  
Vol 10 (4) ◽  
pp. 1487 ◽  
Author(s):  
Remy Fabbro

Depending of the laser operating parameters, several characteristic regimes of laser welding can be observed. At low welding speeds, the aspect ratio of the keyhole can be rather large with a rather vertical cylindrical shape, whereas at high welding speeds, low aspect ratios result, where only the keyhole front is mainly irradiated. For these different regimes, the dependence of the keyhole (KH) depth or the keyhole threshold, as a function of the operating parameters and material properties, is derived and their resulting scaling laws are surprisingly very similar. This approach allows us to analyze the keyhole behavior for these welding regimes, around their keyhole generation thresholds. Specific experiments confirm the occurrence and the behavior of these unstable keyholes for these conditions. Furthermore, recent experimental results can be analyzed using these approaches. Finally, this analysis allows us to define the aspect ratio range for the occurrence of this unstable behavior and to highlight the importance of laser absorptivity for this mechanism. Consequently, the use of a short wavelength laser for the reduction of these keyhole stability issues and the corresponding improvement of weld seam quality is emphasized.


Author(s):  
Subin Shrestha ◽  
Y. Kevin Chou

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.


Author(s):  
Subin Shrestha ◽  
Y. Kevin Chou

Abstract The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using FLOW-3D. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.


2019 ◽  
Vol 114 ◽  
pp. 1-9 ◽  
Author(s):  
Dabin Zhang ◽  
Meng Wang ◽  
Chengsong Shu ◽  
Yunfei Zhang ◽  
Dongsheng Wu ◽  
...  

2019 ◽  
Vol 63 (3) ◽  
pp. 815-823 ◽  
Author(s):  
Dongsheng Wu ◽  
Xueming Hua ◽  
Lijin Huang ◽  
Fang Li ◽  
Yan Cai

Author(s):  
Wenda Tan ◽  
Wenkang Huang

In laser keyhole welding of dissimilar metals, the thermo-fluid flow in the molten pool has decisive effects on the compositional mixing of different chemical elements and hence the formation of detrimental intermetallic compounds. A numerical model is developed in this work to investigate the composition mixing in laser keyhole welding of dissimilar metals. The model takes into account multiple important physics in the process, including dynamic keyhole evolution, laser matter-interaction, phase change, thermo-fluid flow, and composition diffusion/advection. The preliminary simulation results demonstrate that the keyhole behavior is strongly affected by the properties of the dissimilar metals, and the keyhole fluctuation causes an unstable flow in the molten pool that facilitates the compositional mixing through advection.


Sign in / Sign up

Export Citation Format

Share Document