pr controller
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 38)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Gao Ming ◽  
Wang Xiaohong ◽  
Wu Linping ◽  
Wei Daliang ◽  
Ma Weicheng ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4225
Author(s):  
Chengbi Zeng ◽  
Sudan Li ◽  
Hanwen Wang ◽  
Hong Miao

Repetitive control (RC) is gradually used in inverters tied with weak grid. To achieve the zero steady-state error tracking of inverter current and compensate the harmonic distortion caused by frequency fluctuation, a frequency adaptive (FA) control scheme for LCL-type inverter connected with weak grid is proposed. This scheme adopts a proportional resonance (PR) controller in parallel with RC (PRRC) to overcome the disadvantages caused by RC inherent one-cycle time delay. A fractional delay (FD) filter based on the Newton structure is proposed to approximate the fraction item of fs/f, where fs and f are sample frequency and grid frequency, respectively. The structure of the proposed FD filter is relatively simple; moreover, coefficients of the filter maintain constant so as not to need online tuning even when grid frequency fluctuates, which decreases the computational burden considerably. The feasibility and effectiveness of the proposed FA control scheme, named as Newton-FAPRRC, are all verified by the simulation and experimental results.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4160
Author(s):  
Waqar Uddin ◽  
Tiago D. C. Busarello ◽  
Kamran Zeb ◽  
Muhammad Adil Khan ◽  
Anil Kumar Yedluri ◽  
...  

This paper proposed a control method for output and circulating currents of modular multilevel converter (MMC). The output and circulating current are controlled with the help of arm currents, which contain DC, fundamental frequency, and double frequency components. The arm current is transformed into a stationary reference frame (SRF) to isolate the DC and AC components. The AC component is controlled with a conventional proportional resonant (PR) controller, while the DC component is controlled by a proportional controller. The effective control of the upper arm and lower arm ultimately controls the output current so that it delivers the required power to the grid and circulating current in such a way that the second harmonic component is completely vanished leaving behind only the DC component. Comparative results of leg-level control based on PR controller are included in the paper to show the effectiveness of the proposed control scheme. A three-phase, five-level MMC is developed in MATLAB/Simulink to verify the effectiveness of the proposed control method.


2021 ◽  
Vol 27 (1) ◽  
pp. 16-29
Author(s):  
D. Danalakshmi ◽  
S. Prathiba ◽  
M. Ettappan ◽  
D. Mohan Krishna

Abstract The Smart Grid environment gives more benefits for the consumers, whereas the power quality is one of the challenging factors in the smart grid environment. To protect the system equipment and increase the reliability, different filter technologies are used. Even though, consumers’ expectations towards the power quality are not fulfilled. To overcome these drawbacks and enhance the system reliability, a new Custom Power Devices (CPD) are introduced in the system. Among different CPDs, the Dynamic Voltage Restorer (DVR) is one of the voltage compensating devices that is used to improve the power quality during distortions. When the distortions such as voltage swell and sag occur in the distribution system, the control strategy in the DVR plays a significant role. In this article, the DVR performance using Proportional Integral (PI), Proportional Resonant (PR) controllers are analyzed. A robust optimization algorithm called Self Balanced Differential Evolution (SBDE) is used to find the optimal gain values of the controllers in order to reach the target of global minimum error and obtain fast response. Then, a comparative analysis is performed between different controllers and verified that the performance of PR controller is superior than the other controllers. It has been found that the proposed PR controller strategy reduces the Total Harmonic Distortion (THD) values for all types of faults. The proposed SBDE optimized DVR with PR controller reduces the THD value less than 4% under voltage distoration condition. The DVR topology is validated in MATLAB/SIMULINK in order to detect the disturbance and inject the voltage to compensate the load voltage.


Sign in / Sign up

Export Citation Format

Share Document