porcine aortic endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 7)

H-INDEX

35
(FIVE YEARS 2)

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Irvin Tubon ◽  
Chiara Bernardini ◽  
Fabiana Antognoni ◽  
Roberto Mandrioli ◽  
Giulia Potente ◽  
...  

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 μg/ml); no viability alterations were found in the 10-50 μg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 μg/ml of extract caused a significant increase in pAEC’s migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions’ number. On the other hand, CTEE at 100 μg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 μg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.


2019 ◽  
Vol 294 (46) ◽  
pp. 17603-17611
Author(s):  
Divyabharathy Tsiros ◽  
Casey E. Sheehy ◽  
Surenna Pecchia ◽  
Matthew A. Nugent

Vascular endothelial growth factor-A (VEGF) plays a critical role in stimulating angiogenesis in normal and disease states. Anti-VEGF antibodies have been developed to manage pathological angiogenesis. Bevacizumab, sold under the brand name Avastin, is a humanized mAb that binds VEGF and blocks its binding to its signaling receptor, VEGF receptor 2, and is used to treat patients with a variety of cancers or retinal disorders. The ability of Avastin to modulate other nonreceptor interactions of VEGF has not been fully defined. In this study, we investigated Avastin's capacity to modulate VEGF165 binding to porcine aortic endothelial cells and to heparin and fibronectin (FN) across a range of pH values (pH 5–8). We observed that Avastin slightly enhanced VEGF binding to heparin and that heparin increased VEGF binding to Avastin. In contrast, Avastin inhibited VEGF binding to cells and FN, yet Avastin could still bind to VEGF that was bound to FN, indicating that these binding events are not mutually exclusive. Avastin binding to VEGF was dramatically reduced at acidic pH values (pH 5.0–6.5), whereas VEGF binding to FN and nonreceptor sites on cells was enhanced. Interestingly, the reduced Avastin–VEGF binding at acidic pH was rescued by heparin, as was Avastin's ability to inhibit VEGF binding to cells. These results suggest that heparin might be used to expand the clinical utility of Avastin. Our findings highlight the importance of defining the range of VEGF interactions to fully predict antibody activity within a complex biological setting.


Immunobiology ◽  
2019 ◽  
Vol 224 (5) ◽  
pp. 605-613 ◽  
Author(s):  
Yuki Noguchi ◽  
Akira Maeda ◽  
Pei-Chi Lo ◽  
Chihiro Takakura ◽  
Tomoko Haneda ◽  
...  

2019 ◽  
Vol 26 (6) ◽  
Author(s):  
Chongwei Xie ◽  
Zepeng Qu ◽  
Hidetaka Hara ◽  
Wenjie Dai ◽  
Xiliang Wang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Irvin Tubon ◽  
Augusta Zannoni ◽  
Chiara Bernardini ◽  
Roberta Salaroli ◽  
Martina Bertocchi ◽  
...  

The aim of the present research was to study the effects of an ethanolic extract of Salvia sagittata Ruiz & Pav (SSEE), an endemic Ecuadorian plant traditionally used to treat inflammation and different intestinal affections, on primary cultures of porcine aortic endothelial cells (pAECs). pAECs were cultured in the presence of different concentrations (1-200 μg/mL) of SSEE for 24 h, and cytotoxicity was evaluated by the MTT assay. SSEE did not negatively affect cellular viability at any concentration tested. Cell cycle was analyzed and no significant change was observed. Then, the anti-inflammatory effects of SSEE on pAECs were analyzed using a lipopolysaccharide (LPS) as the inflammatory stimulus. Different markers involved in the inflammatory process, such as cytokines and protective molecules, were evaluated by real-time quantitative PCR and Western blot. SSEE showed the ability to restore pAEC physiological conditions reducing interleukin-6 and increasing Heme Oxygenase-1 protein levels. The phytochemical composition of SSEE was also evaluated via HPLC-DAD and spectrophotometric assays. The presence of different phenolic acids and flavonoids was revealed, with rosmarinic acid as the most abundant component. SSEE possesses an interesting antioxidant activity, as assessed through both the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. In conclusion, results suggest that SSEE is endowed with an in vitro anti-inflammatory effect. This represents the initial step in finding a possible scientific support for the traditional therapeutic use of this plant.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Martina Bertocchi ◽  
Gloria Isani ◽  
Federica Medici ◽  
Giulia Andreani ◽  
Irvin Tubon Usca ◽  
...  

This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.


2017 ◽  
Vol 24 (4) ◽  
pp. e12312 ◽  
Author(s):  
Zhongqiang Zhang ◽  
Bingsi Gao ◽  
Chengjiang Zhao ◽  
Cassandra Long ◽  
Haizhi Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document