terrain corrections
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 482
Author(s):  
Dharmendra Kumar ◽  
Arun Singh ◽  
Mohammad Israil

The magnetotelluric (MT) method is one of the useful geophysical techniques to investigate deep crustal structures. However, in hilly terrains, e.g., the Garhwal Himalayan region, due to the highly undulating topography, MT responses are distorted. Such responses, if not corrected, may lead to the incorrect interpretation of geoelectric structures. In the present paper, we implemented terrain corrections in MT data recorded from the Garhwal Himalayan Corridor (GHC). We used AP3DMT, a 3D MT data modeling and inversion code written in the MATLAB environment. Terrain corrections in the MT impedance responses for 39 sites along the Roorkee–Gangotri profile in the period range of 0.01 s to 1000 s were first estimated using a synthetic model by recording the topography and locations of MT sites. Based on this study, we established the general character of the terrain and established where terrain corrections were necessary. The distortion introduced by topography was computed for each site using homogenous and heterogeneous models with actual topographic variations. Period-dependent, galvanic and inductive distortions were observed at different sites. We further applied terrain corrections to the real data recorded from the GHC. The corrected data were inverted, and the inverted model was compared with the corresponding inverted model obtained with uncorrected data. The modification in electrical resistivity features in the model obtained from the terrain-corrected response suggests the necessity of terrain correction in MT data recorded from the Himalayan region.


2020 ◽  
Vol 10 (01) ◽  
pp. 65
Author(s):  
Sorja Koesuma ◽  
Mela Budiani Septianingsih ◽  
Budi Legowo

<p>Information about the eastern side subsurface stones of Mount Lawu regarding geothermal potential is limited. This research was conducted to provide information regarding geothermal potential in those area by using the gravity method. We did a 18 sites of gravity surveys in eastern flank of Mount Lawu where located in Magetan regency, Ngawi regency and Sragen regency, East Java. The principle of this method is to measure the earth's gravity field, then the value of gravity is corrected by some gravity corrections, i.e. height, tide, drift, normal gravity, free-air, Bouguer and terrain corrections. The Complete Bouguer Anomaly (CBA) shows the formation that related to the rock formation in the subsurface of Mount Lawu. Based on CBA modelling we found that in the eastern flank of Mount Lawu contains of tuff and breccia of volcanic rocks, breccia Jabolarangan and tuff Jabolarangan, lava andesite, igneous rock (pumice), and sedimentary rocks in the form of sandstone and clay. We found a fault structure on six tracks of a research area. Otherwise, we estimated that there is a geothermal potential on the southeast side of the research area</p>


2020 ◽  
Author(s):  
Sara Sayyadi ◽  
Magnús T.Gudmundsson ◽  
Thórdís Högnadóttir ◽  
James White ◽  
Marie D. Jackson

&lt;p&gt;The formation of the oceanic island Surtsey in the shallow ocean off the south coast of Iceland in 1963-1967 remains one of the best-studied examples of basaltic emergent volcanism to date. The island was built by both explosive, phreatomagmatic phases and by effusive activity forming lava shields covering parts of the explosively formed tuff cones. &amp;#160;&amp;#160;A detailed gravity survey was carried out on Surtsey in July 2014 with a gravity station spacing of ~100 m.&amp;#160; We analyse these data in order to refine a 2.5D-structural and density model of the internal structure for this type locality of Surtseyan volcanism. &amp;#160;We carry out a complete Bouguer correction of these data using total terrain corrections based on detailed DEMs of the island and the submarine bathymetry.&amp;#160; The principal components of the island are the two tuff cones composed principally of lapilli tuff; this was originally phreatomagmatic tephra formed in the explosive phases of the eruption. Lapilli tuff can be subdivided into (1) submarine lapilli tuff and (2) lapilli tuff above sea level. Other units are (3) subaerial lava, and (4) subaqueous lava deltas. Minor components that are volumetrically insignificant are small intrusions, and unconsolidated and unaltered tephra, still found in thin layers flanking the tuff cones.&amp;#160; An additional formation, relevant for any analysis of the subsurface structure of Surtsey, is (5) the sedimentary rocks making up the seafloor, being at least 100 m thick but probably much thicker.&amp;#160; Using measurements of the density of all the above components, and subdividing the island into different units based on its pattern of growth, we specifically attempt to constrain the width and depth of diatreme structures proposed by Moore (1985) and confirmed in the ICDP SUSTAIN drilling of Surtsey in 2017 (Jackson et al., 2019).&amp;#160; Our forward modeling is aided by a detailed subdivision of the island into units (1) to (4) based on repeated mapping of the island during 1964-1967.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Moore, J. G., 1985, Geological Magazine 122, 649&amp;#8211;661&lt;/p&gt;&lt;p&gt;Jackson, M. D., et al. 2019, Scientific Drilling 25, 35&amp;#8211;46.&lt;/p&gt;


2020 ◽  
Vol 221 (3) ◽  
pp. 1820-1831
Author(s):  
R Goyal ◽  
W E Featherstone ◽  
D Tsoulis ◽  
O Dikshit

SUMMARY Computation of gravimetric terrain corrections (TCs) is a numerical challenge, especially when using very high-resolution (say, ∼30 m or less) digital elevation models (DEMs). TC computations can use spatial or/and spectral techniques: Spatial domain methods are more exact but can be very time-consuming; the discrete/fast Fourier transform (D/FFT) implementation of a binomial expansion is efficient, but fails to achieve a convergent solution for terrain slopes &gt;45°. We show that this condition must be satisfied for each and every computation-roving point pair in the whole integration domain, not just at or near the computation points. A combination of spatial and spectral methods has been advocated by some through dividing the integration domain into inner and outer zones, where the TC is computed from the superposition of analytical mass-prism integration and the D/FFT. However, there remain two unresolved issues with this combined approach: (1) deciding upon a radius that best separates the inner and outer zones and (2) analytical mass-prism integration in the inner zone remains time-consuming, particularly for high-resolution DEMs. This paper provides a solution by proposing: (1) three methods to define the radius separating the inner and outer zones and (2) a numerical solution for near-zone TC computations based on the trapezoidal and Simpson's rules that is sufficiently accurate w.r.t. the exact analytical solution, but which can reduce the computation time by almost 50 per cent.


2019 ◽  
Vol 49 (2) ◽  
pp. 207-227 ◽  
Author(s):  
Pavol Zahorec ◽  
Juraj Papčo ◽  
Peter Vajda ◽  
Stanislav Szabó

Abstract Results from a detailed gravity survey realized along the planned highway tunnel in the karstic area of Slovak Karst in the eastern Slovakia are presented. Detailed gravity profiles crossed an area of rugged topography, therefore the terrain corrections played a crucial role in the gravity data processing. The airborne laser scanning technique (LiDAR) was used in order to compile a high-resolution digital terrain model (DTM) of the surrounding area and to calculate terrain corrections properly. The difference between the Bouguer anomalies calculated with an available nationwide DTM and those with new LiDAR-based model can be significant in some places as it is presented in the paper. A new method for Bouguer correction density analysis based on surface data is presented. Special underground gravity measurements in the existing nearby railway tunnel were also conducted in order to determine the mean density of the topographic rocks. The Bouguer anomalies were used to interpret lithological contacts and tectonic/karstic discontinuities.


2019 ◽  
Vol 46 (9) ◽  
pp. 4618-4627 ◽  
Author(s):  
Christian Hirt ◽  
Meng Yang ◽  
Michael Kuhn ◽  
Blažej Bucha ◽  
Andre Kurzmann ◽  
...  

2019 ◽  
Vol 76 ◽  
pp. 03003 ◽  
Author(s):  
Puspita Dian Maghfira ◽  
Sintia Windhi Niasari

Mount Merapi and Mount Merbabu are active volcanoes that lies in Java Island. Java island is part of Indonesia region. This island was subduction product of Eurasian and Indo-Australian plates, caused the island consist of many volcanoes. A regional gravity study was carried out over Mt. Merapi-Merbabu by TOPEX/Poseidon satellite data. The data was corrected by free air correction and become free air anomaly. Then, that anomaly was corrected by Bouguer and Terrain corrections, become Complete-Bouguer Anomaly. This study present subsurface density model beneath Mt. Merapi and Merbabu to identify the magma chamber.


2018 ◽  
Vol 44 (3) ◽  
pp. 89-99 ◽  
Author(s):  
Salissou Ibrahim Yahaya ◽  
Driss El Azzab

In this study, we computed and presented grid maps of high-resolution terrain corrections and residual terrain model (RTM) as short-wavelengths of the gravity field and the geoid in Niger. We constructed RTM elevations from mean elevation surfaces corresponding to ~100 km and ~9 km of spatial scales and 3 arc-seconds SRTM data. The computations are performed at gravity stations and 1.5 arc-minute regular grid, out to 10 and 200 km for inner and outer zones respectively with the standard density of 2670 kg/m-3. The study area is characterized by low values of terrain effects. The indirect effects are lower than 10 cm for ~9 km and reach 1.8 m for ~100 km. In Niger, 98.44% of indirect effects are lower than 1 cm and 98.2% of direct effect are lower than 5 mgal for ~9 km. For ~100 km, 85.87% of indirect effects are lower than 10 cm and 89.77% of direct effects are lower than 5 mgal for ~100 km, and 98.77% of terrain corrections are lower than 1 mgal. We found out that height discrepancies between gravity stations and SRTM influences the precision of terrain effects. The results are value for applications in geodesy and geophysics that require accurate interpretations.


2018 ◽  
Vol 37 (8) ◽  
pp. 584-591 ◽  
Author(s):  
Leon Kaub ◽  
Christopher Seruge ◽  
Shaurya D. Chopra ◽  
Jonathan M. G. Glen ◽  
Mircea Teodorescu

Sign in / Sign up

Export Citation Format

Share Document