climbing fiber
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 29)

H-INDEX

68
(FIVE YEARS 5)

PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001400
Author(s):  
Akshay Markanday ◽  
Junya Inoue ◽  
Peter W. Dicke ◽  
Peter Thier

Purkinje cell (PC) discharge, the only output of cerebellar cortex, involves 2 types of action potentials, high-frequency simple spikes (SSs) and low-frequency complex spikes (CSs). While there is consensus that SSs convey information needed to optimize movement kinematics, the function of CSs, determined by the PC’s climbing fiber input, remains controversial. While initially thought to be specialized in reporting information on motor error for the subsequent amendment of behavior, CSs seem to contribute to other aspects of motor behavior as well. When faced with the bewildering diversity of findings and views unraveled by highly specific tasks, one may wonder if there is just one true function with all the other attributions wrong? Or is the diversity of findings a reflection of distinct pools of PCs, each processing specific streams of information conveyed by climbing fibers? With these questions in mind, we recorded CSs from the monkey oculomotor vermis deploying a repetitive saccade task that entailed sizable motor errors as well as small amplitude saccades, correcting them. We demonstrate that, in addition to carrying error-related information, CSs carry information on the metrics of both primary and small corrective saccades in a time-specific manner, with changes in CS firing probability coupled with changes in CS duration. Furthermore, we also found CS activity that seemed to predict the upcoming events. Hence PCs receive a multiplexed climbing fiber input that merges complementary streams of information on the behavior, separable by the recipient PC because they are staggered in time.


Cell Reports ◽  
2021 ◽  
Vol 36 (12) ◽  
pp. 109719
Author(s):  
Christopher Weyrer ◽  
Josef Turecek ◽  
Bailey Harrison ◽  
Wade G. Regehr

2021 ◽  
pp. JN-RM-0616-21
Author(s):  
Shreya Malhotra ◽  
Gokulakrishna Banumurthy ◽  
Reagan Pennock ◽  
Jada H. Vaden ◽  
Izumi Sugihara ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yueh‐Chi Wu ◽  
Elan D. Louis ◽  
John Gionco ◽  
Ming‐Kai Pan ◽  
Phyllis L. Faust ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Josef Turecek ◽  
Wade G Regehr

The inferior olive (IO) is composed of electrically-coupled neurons that make climbing fiber synapses onto Purkinje cells. Neurons in different IO subnuclei are inhibited by synapses with wide ranging release kinetics. Inhibition can be exclusively synchronous, asynchronous, or a mixture of both. Whether the same boutons, neurons or sources provide these kinetically distinct types of inhibition was not known. We find that in mice the deep cerebellar nuclei (DCN) and vestibular nuclei (VN) are two major sources of inhibition to the IO that are specialized to provide inhibitory input with distinct kinetics. DCN to IO synapses lack fast synaptotagmin isoforms, release neurotransmitter asynchronously, and are exclusively GABAergic. VN to IO synapses contain fast synaptotagmin isoforms, release neurotransmitter synchronously, and are mediated by combined GABAergic and glycinergic transmission. These findings indicate that VN and DCN inhibitory inputs to the IO are suited to control different aspects of IO activity.


2020 ◽  
Vol 887 ◽  
pp. 173474
Author(s):  
Xin-Yuan Zhang ◽  
Yi-Dan Zhang ◽  
Bai-Ri Cui ◽  
Ri Jin ◽  
Chun-Ping Chu ◽  
...  

2020 ◽  
Author(s):  
Lorenzo Bina ◽  
Vincenzo Romano ◽  
Tycho M. Hoogland ◽  
Laurens W.J. Bosman ◽  
Chris I. De Zeeuw

AbstractThe cerebellum is involved in cognition next to motor coordination. During complex tasks, climbing fiber input to the cerebellum can deliver seemingly opposite signals, covering both motor and non-motor functions. To elucidate this ambiguity, we hypothesized that climbing fiber activity represents the saliency of inputs leading to action-readiness. We addressed this hypothesis by recording Purkinje cell activity in lateral cerebellum of awake mice learning go/no-go decisions based on entrained saliency of different sensory stimuli. As training progressed, the timing of climbing fiber signals switched in a coordinated fashion with that of Purkinje cell simple spikes towards the moment of occurrence of the salient stimulus that required action. Trial-by-trial analysis indicated that emerging climbing fiber activity is not linked to individual motor responses or rewards per se, but rather reflects the saliency of a particular sensory stimulus that engages a general readiness to act, bridging the non-motor with the motor functions.In briefMice were trained to identify the saliency of different sensory inputs in that they had to learn to ignore a prominent sound cue and respond to a light tactile cue in a Go/No-Go licking task. As the mice learned to discriminate the two inputs and respond to the proper signal, the Purkinje cells in the lateral cerebellum switched their climbing fiber activity (i.e., complex spike activity) towards the moment of occurrence of the salient stimulus that required a response, while concomitantly shifting the phase of their simple spike modulation. Trial-by-trial analysis indicates that the emerging climbing fiber activity is not linked to the occurrence of the motor response or reward per se, but rather reflects the saliency of a particular sensory stimulus engaging a general readiness to act.


2020 ◽  
Author(s):  
Seung-Eon Roh ◽  
Seung Ha Kim ◽  
Changhyeon Ryu ◽  
Chang-Eop Kim ◽  
Yong Gyu Kim ◽  
...  

2020 ◽  
Vol 23 (11) ◽  
pp. 1399-1409
Author(s):  
Kyung-Seok Han ◽  
Christopher H. Chen ◽  
Mehak M. Khan ◽  
Chong Guo ◽  
Wade G. Regehr

Sign in / Sign up

Export Citation Format

Share Document