fetal dose
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Yeon Soo Yeom ◽  
Keith Tchadwick Griffin ◽  
Matthew M Mille ◽  
Choonik Lee ◽  
Shannon O'Reilly ◽  
...  

Abstract Objective: We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy. Approach: The gestational-age dependent pregnant phantom series developed at the University of Florida (UF) were converted into DICOM-RT format (CT images and structures) and imported into a treatment planning system (TPS) (Eclipse v15.6) commissioned to a IBA PBS nozzle. A proton PBS CSI plan (prescribed dose: 36 Gy) was created on the phantoms. The TOPAS MC code was used to simulate the proton PBS CSI on the phantoms, for which MC beam properties at the nozzle exit (spot size, spot divergence, mean energy, and energy spread) were matched to IBA PBS nozzle beam measurement data. We calculated mean absorbed doses for 28 organs and tissues and whole body of the fetus at eight gestational ages (8, 10, 15, 20, 25, 30, 35, and 38 weeks). For contextual purposes, the fetal organ/tissue doses from the treatment planning CT scan of the mother’s head and torso were estimated using the National Cancer Institute dosimetry system for CT (NCICT, Version 3) considering a low-dose CT protocol (CTDIvol: 8.97 mGy). Main Results: The majority of the fetal organ/tissue doses from the proton PBS CSI treatment fell within a range of 3 to 6 mGy. The fetal organ/tissue doses for the 38-week phantom showed the largest variation with the doses ranging from 2.9 mGy (adrenals) to 8.2 mGy (eye lenses) while the smallest variation ranging from 3.2 mGy (oesophagus) to 4.4 mGy (brain) was observed for the doses for the 20-week phantom. The fetal whole-body dose ranged from 3.7 mGy (25 weeks) to 5.8 mGy (8 weeks). Most of the fetal doses from the planning CT scan fell within a range of 7 to 13 mGy, approximately 2-to-9 times lower than the fetal dose equivalents of the proton PBS CSI treatment (assuming a quality factor of 7). Significance: The fetal organ/tissue doses observed in the present work will be useful for one of the first clinically informative predictions on the magnitude of fetal dose during proton PBS CSI during pregnancy.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Pattarakan Suwanbut ◽  
Thiansin Liamsuwan ◽  
Danupon Nantajit ◽  
Wilai Masa-nga ◽  
Chirapha Tannanonta

Decision for radiotherapy during the first trimester of pregnancy may occur, as patients may not realize their pregnancy at the very early stage. Since radiation dose can affect fetal development, the aim of this study was to evaluate fetal dose and associated deterministic effects and risks to the fetus from breast cancer radiotherapy of an 8-week pregnant patient. PHITS (Particle and Heavy Ion Transport code System) Monte Carlo simulation and the J-45 computational pregnancy phantom were used to simulate breast cancer radiotherapy from a 6 MV TrueBeam linear accelerator using the three dimensional-conformal radiotherapy (3D-CRT) technique with a prescribed dose to the planning target volume (PTV) of 50 Gy. Once the fetal dose was evaluated, the occurrence of the deterministic effects and risks for developing stochastic effects in the fetus were assessed using the recommendations of NCRP Report No. 174, AAPM Report No. 50, and ICRP Publication 84. The fetal dose was evaluated to be 3.37 ± 2.66 mGy, suggesting that the fetus was expected to have no additional deterministic effects, while the risks for developing cancer and malfunctions were similar to that expected from exposure to background radiation. The comparison with the other studies showed that accurate consideration of fetal position and size was important for dose determination in the fetus, especially at the early pregnancy stage when the fetus is very small.


2021 ◽  
Vol 2 (4) ◽  
pp. 35-43
Author(s):  
Hamid Ghaznavi ◽  

To diagnose diseases during gestation period including renal stones, appendicitis, and pulmonary embolism in pregnant patients, computed tomography (CT) can be a golden standard. Due to CT examination, the fetus is prone to receiving a considerable dose which is the result of direct or scattered (external and internal scattered radiation) beams. The effects of ionization radiation on fetus include mutagenesis and carcinogenesis, therefore, it is essential to reduce fetus dose for pregnant patients who undergo CT examination during gestation period. This article aims to review approaches that are effective in reducing fetal dose in pregnant patients.


2021 ◽  
pp. 109780
Author(s):  
Xinhua Li ◽  
Kai Yang ◽  
Sjirk J. Westra ◽  
Bob Liu
Keyword(s):  

2021 ◽  
Vol 84 ◽  
pp. 24-32
Author(s):  
Leonardo Catusso ◽  
William S. Santos ◽  
Rogério M.V. da Silva ◽  
João V.B. Valença

2020 ◽  
Vol 12 (10) ◽  
pp. 1014-1017 ◽  
Author(s):  
Stephanie H Chen ◽  
Marie-Christine Brunet

BackgroundThe prevalence of women physicians is steadily rising, but the field of neurointervention remains one of the most male-dominated subspecialties in medicine. A fear of radiation exposure, particularly during pregnancy and childbearing years, may be responsible for deterring some of the best and brightest. This is the first study to examine the amount of maternal and fetal radiation exposure during a pregnant neurointerventional fellow’s training.MethodsWe retrospectively analyzed the radiation exposure of a neurointerventional fellow prior to and during pregnancy from February 2018 to May 2019 in 758 neurointerventional cases. The collar dosimeter was used to measure overall maternal exposure and an additional fetal dosimeter was worn under two lead apron skirts to estimate fetal radiation exposure.ResultsThere was not a significant difference between pre- and post-pregnancy overall maternal radiation exposure as measured by the collar dosimeter (151 mrem pre-pregnancy and 105 mrem during pregnancy, p=0.129). Mean fluoroscopy time and fluoroscopy emission per procedure also did not differ prior to and during pregnancy. Fetal radiation exposure measurements from both the Mirion Genesis Ultra TLD dosimeter as well as the Mirion Instadose dosimeters worn under double lead apron skirts were 0 mrem for all 6 months.ConclusionThese findings suggest that, when optimal radiation safety practices are implemented, the fetal dose of a pregnant neurointerventionalist is negligible. Further studies and education are necessary to encourage women to choose neurointervention and allow practicing women neurointerventionalists to maintain their productivity during their reproductive years.


2019 ◽  
Vol 44 (4) ◽  
pp. 156-160
Author(s):  
So Hyun Park ◽  
Won Hoon Choi ◽  
Jinhyun Choi

Sign in / Sign up

Export Citation Format

Share Document