triose phosphate isomerase
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 12)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 28 ◽  
Author(s):  
Lenci K. Vázquez-Jiménez ◽  
Antonio Moreno-Herrera ◽  
Alfredo Juárez-Saldivar ◽  
Alonzo González-González ◽  
Eyra Ortiz-Pérez ◽  
...  

Background: Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites justifies the search for new therapeutic drugs and the identification of new targets becomes a valuable approach. In this scenario, glycolysis pathway which consists of the conversion of glucose into pyruvate plays an important role in the protozoa energy supply and it is therefore considered as a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM show structural differences with human enzyme counterparts suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. Objective: In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. Results: TIM inhibitors showed mainly aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region were the main pathways that disabled the catalytic activity of the enzyme. Conclusion: Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies demonstrate that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.


2021 ◽  
pp. 247255522110181
Author(s):  
Andreas Vogt ◽  
Samantha L. Eicher ◽  
Tracey D. Myers ◽  
Stacy L. Hrizo ◽  
Laura L. Vollmer ◽  
...  

Triose phosphate isomerase deficiency (TPI Df) is an untreatable, childhood-onset glycolytic enzymopathy. Patients typically present with frequent infections, anemia, and muscle weakness that quickly progresses with severe neuromusclar dysfunction requiring aided mobility and often respiratory support. Life expectancy after diagnosis is typically ~5 years. There are several described pathogenic mutations that encode functional proteins; however, these proteins, which include the protein resulting from the “common” TPIE105D mutation, are unstable due to active degradation by protein quality control (PQC) pathways. Previous work has shown that elevating mutant TPI levels by genetic or pharmacological intervention can ameliorate symptoms of TPI Df in fruit flies. To identify compounds that increase levels of mutant TPI, we have developed a human embryonic kidney (HEK) stable knock-in model expressing the common TPI Df protein fused with green fluorescent protein (HEK TPIE105D-GFP). To directly address the need for lead TPI Df therapeutics, these cells were developed into an optical drug discovery platform that was implemented for high-throughput screening (HTS) and validated in 3-day variability tests, meeting HTS standards. We initially used this assay to screen the 446-member National Institutes of Health (NIH) Clinical Collection and validated two of the hits in dose–response, by limited structure–activity relationship studies with a small number of analogs, and in an orthogonal, non-optical assay in patient fibroblasts. The data form the basis for a large-scale phenotypic screening effort to discover compounds that stabilize TPI as treatments for this devastating childhood disease.


2020 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
Liangrong Xiong ◽  
Hui Du ◽  
Keyan Zhang ◽  
Duo Lv ◽  
Huanle He ◽  
...  

The leaf is an important photosynthetic organ and plays an essential role in the growth and development of plants. Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis. In this study, we identified an EMS-induced mutant, yl2.1, which exhibited yellow cotyledons and true leaves that did not turn green with leaf growth. The yl2.1 locus was controlled by a recessive nuclear gene. The CsYL2.1 was mapped to a 166.7-kb genomic region on chromosome 2, which contains 24 predicted genes. Only one non-synonymous single nucleotide polymorphism (SNP) was found between yl2.1 and wt-WD1 that was located in Exon 7 of Csa2G263900, resulting in an amino acid substitution. CsYL2.1 encodes a plastid isoform of triose phosphate isomerase (pdTPI), which catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) in chloroplasts. CsYL2.1 was highly expressed in the cotyledons and leaves. The mesophyll cells of the yl2.1 leaves contained reduced chlorophyll and abnormal chloroplasts. Correspondingly, the photosynthetic efficiency of the yl2.1 leaves was impaired. Identification of CsYL2.1 is helpful in elucidating the function of ptTPI in the chlorophyll metabolism and chloroplast development and understanding the molecular mechanism of this leaf color variant in cucumber.


2020 ◽  
Vol 295 (51) ◽  
pp. 17852-17864
Author(s):  
Bijoya Karmakar ◽  
Bodhisattwa Saha ◽  
Kuladip Jana ◽  
Swati Gupta Bhattacharya

Aspergillus terreus is an allergenic fungus, in addition to causing infections in both humans and plants. However, the allergens in this fungus are still unknown, limiting the development of diagnostic and therapeutic strategies. We used a proteomic approach to search for allergens, identifying 16 allergens based on two-dimensional immunoblotting with A. terreus susceptible patient sera. We further characterized triose-phosphate isomerase (Asp t 36), one of the dominant IgE (IgE)-reactive proteins. The gene was cloned and expressed in Escherichia coli. Phylogenetic analysis showed Asp t 36 to be highly conserved with close similarity to the triose-phosphate isomerase protein sequence from Dermatophagoides farinae, an allergenic dust mite. We identified four immunodominant epitopes using synthetic peptides, and mapped them on a homology-based model of the tertiary structure of Asp t 36. Among these, two were found to create a continuous surface patch on the 3D structure, rendering it an IgE-binding hotspot. Biophysical analysis indicated that Asp t 36 shows similar secondary structure content and temperature sensitivity with other reported triose-phosphate isomerase allergens. In vivo studies using a murine model displayed that the recombinant Asp t 36 was able to stimulate airway inflammation, as demonstrated by an influx of eosinophils, goblet cell hyperplasia, elevated serum Igs, and induction of Th2 cytokines. Collectively, our results reveal the immunogenic property of Asp t 36, a major allergen from A. terreus, and define a new fungal allergen more broadly. This allergen could serve as a potent candidate for investigating component resolved diagnosis and immunotherapy.


2020 ◽  
Vol 2 ◽  
pp. e13
Author(s):  
Neville Y. Forlemu ◽  
Joseph Sloop

Malaria is a disease with debilitating health and negative economic impacts in regions at high risk of infection. Parasitic resistance and side effects of current antimalarial drugs are major setbacks to the successful campaigns that have reduced malaria incidence by 40% in the last decade. The parasite’s dependence on glycolysis for energy requirements makes pathway enzymes suitable targets for drug development. Specifically, triose phosphate isomerase (TPI) from Plasmodium falciparum (pTPI) and human (hTPI) cells show striking structural features that can be used in development of new antimalarial agents. In this study MD simulations were used to characterize binding sites on hTPI and pTPI interactions with sulfonamides. The molecular mechanics Poisson–Boltzmann surface area (MM–PBSA) method was used to estimate the interaction energies of four sulfonamide-TPI docked complexes. A unique combination of key residues at the dimer interface of pTPI is responsible for the observed selective affinity to pTPI compared to hTPI. The representative sulfonamide; 4-amino-N-(3,5-dimethylphenyl)-3-fluorbenzenesulfonamide (sulfaE) shows a strong affinity with pTPI (dimer interface, −42.91 kJ/mol and active site region, −71.62 kJ/mol), hTPI (dimer interface, −41.32 kJ/mol and active site region, −84.40 kJ/mol). Strong and favorable Van der Waals interactions and increases in non-polar solvation energies explain the difference in affinity between pTPI with sulfaE compared to hTPI at the dimer interface. This is an indication that the dimer interface of TPI glycolytic enzyme is vital for development of sulfonamide based antimalarial drugs.


Sign in / Sign up

Export Citation Format

Share Document