porsuk river
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2011 ◽  
Vol 42 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Merih Kivanc ◽  
Meral Yilmaz ◽  
Filiz Demir

2010 ◽  
Vol 7 (2) ◽  
pp. 593-599 ◽  
Author(s):  
Suheyla Yerel

The surface water quality of Porsuk River in Turkey was evaluated by using the multivariate statistical techniques including principal component analysis, factor analysis and cluster analysis. When principal component analysis and factor analysis as applied to the surface water quality data obtain from the eleven different observation stations, three factors were determined, which were responsible from the 66.88% of total variance of the surface water quality in Porsuk River. Cluster analysis grouped eleven observation stations into two clusters under the similarity of surface water quality parameters. Based on the locations of the observation stations and variable concentrations at these stations, it was concluded that urban, industrial and agricultural discharge strongly affected east part of the region. Finally, this study shows that the usefulness of multivariate statistical techniques for analysis and interpretation of datasets and determination pollution factors for river water quality management.


2009 ◽  
Vol 25 ◽  
pp. S101
Author(s):  
M. Yilmaz ◽  
M. Kivanc

2009 ◽  
Vol 44 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Ozan Arslan

Abstract The study offers a GIS-based multivariate statistical analysis strategy to assess river water quality. Multivariate statistical methods and Geographic Information System (GIS) technology have effectively been used for water quality management. Recognizing the fact that the use of standard statistical methods can be restrictive due to the complexity of water quality datasets, geospatial statistical methods have been recommended for the water quality assessment. The objective of the study was to explore the potential capabilities of GIS-based joint multivariate statistical analysis for water quality assessment of Porsuk River in Turkey. A well-known multivariate statistical technique, principal component analysis (PCA), is incorporated into a geographic database for interpretation of water quality data. To characterize spatial variability of water quality data, spatial PCA was performed on the basis of spatial autocorrelation. Application of the joint spatio-multivariate statistical analysis for interpretation of the water quality database offered a better understanding of the hydrochemistry in the study region.


Sign in / Sign up

Export Citation Format

Share Document