AbstractAltered brain energy metabolism associated with increase in lactate levels and the resultant decrease in pH have been increasingly implicated in multiple neuropsychiatric disorders, such as schizophrenia, bipolar disorder, autism spectrum disorder and neurodegenerative disorders. Although it is controversial, change of pH/ lactate level as a primary feature of these diseases, rather than a result of confounding factors such as medication and agonal state, has been evidenced. Animal models that can be studied without such confounding factors inherent to humans are a suitable alternative to understand the controversy. However, the knowledge in animal models regarding brain pH and lactate and their relation to behavioral outcomes is limited in the context of neuropsychiatric disease conditions. In this study, we investigated the common occurrence of changes in the pH and lactate levels in the brain in animal models by analyzing 65 animal models related to neuropsychiatric and neurodegenerative diseases with 1,239 animals. Additionally, we evaluated the behavioral phenotypes relative to the chemical changes in the brain. Among the models, 27 and 24 had significant changes in brain pH and lactate levels, respectively, including Shank2 KO mice, Clock mutant mice, serotonin transporter KO mice, mice with a paternal duplication of human chromosome 15q11-13, Fmr1 KO mice, BTBR mice, APP-J20 Tg mice, social defeat stress-exposed mice, corticosterone-treated mice, and streptozotocin-induced diabetic mice. Meta-analysis of the data revealed a highly significant negative correlation between brain pH and lactate levels, suggestive of increased lactate levels causing decreased brain pH. Statistical learning algorithm based on the comprehensive data has revealed that the increased brain lactate levels can be predominantly predicted by the indices for the percentage of correct response in working memory test, with a significant simple, negative correlation. Our results suggest that brain energy metabolism is commonly altered in many animal models of neuropsychiatric and neurodegenerative diseases, which may be associated with working memory performance. We consider our study to be an essential step suggesting that the brain endophenotypes serve as a basis for the transdiagnostic characterization of the biologically heterogeneous and debilitating cognitive illnesses. Based on these results, we are openly accepting collaborations to extend these findings and to test the hypotheses generated in this study using more animal models. We welcome any mice/rat models of diseases with or without any behavioral phenotypes.