aβ oligomerization
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Youngki Choi ◽  
Ji Sun Yu ◽  
Yechan Joh ◽  
Sungmin Kang ◽  
Young Chul Youn ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4530
Author(s):  
Yang Gao ◽  
Stefan Wennmalm ◽  
Bengt Winblad ◽  
Sophia Schedin-Weiss ◽  
Lars O. Tjernberg

Amyloid β-peptide (Aβ) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aβ oligomerization in neurons still need to be revealed. Förster resonance energy transfer (FRET) is a simple but effective way to study molecular interactions. Here, we used a confocal microscope with a sensitive Airyscan detector for FRET detection. By live cell FRET imaging, we detected Aβ42 oligomerization in primary neurons. The neurons were incubated with fluorescently labeled Aβ42 in the cell culture medium for 24 h. Aβ42 were internalized and oligomerized in the lysosomes/late endosomes in a concentration-dependent manner. Both the cellular uptake and intracellular oligomerization of Aβ42 were significantly higher than for Aβ40. These findings provide a better understanding of Aβ42 oligomerization in neurons.


Author(s):  
Yang Gao ◽  
Stefan Wennmalm ◽  
Bengt Winblad ◽  
Sophia Schedin-Weiss ◽  
Lars Tjernberg

Amyloid β-peptide (Aβ) oligomerization is believed to contribute to the neuronal dysfunction in Alzheimer disease (AD). Despite decades of research, many details of Aβ oligomerization in neurons still need to be revealed. Förster Resonance Energy Transfer (FRET) is a simple but effective way to study molecular interactions. Here we use a confocal microscope with a sensitive Airyscan detector for FRET detection. By live cell FRET imaging, we detect Aβ42 oligomerization in primary neurons. The neurons were incubated with fluorescently labelled Aβ42 in the cell culture medium for 24 hours. Aβ42 were internalized and oligomerized into the lysosomes/late endosomes in a concentration-dependent manner. Both the cellular uptake and intracellular oligomerization of Aβ42 were significantly higher than for Aβ40. These findings provide a better understanding of Aβ42 oligomerization in neurons.


2021 ◽  
Vol 111 ◽  
pp. 103588
Author(s):  
Youngki Choi ◽  
Yechan Joh ◽  
Ji Sun Ryu ◽  
Kaylen Kim ◽  
David Seo ◽  
...  

2020 ◽  
Author(s):  
Anna Vilalta ◽  
Ye Zhou ◽  
Jean Sevalle ◽  
Jennifer K. Griffin ◽  
Kanayo Satoh ◽  
...  

AbstractMissense mutations (e.g. R47H) of the microglial receptor TREM2 increase risk of Alzheimer’s disease (AD), and the soluble ectodomain of wild-type TREM2 (sTREM2) appears to protect in vivo, but the underlying mechanisms are unclear. We show that Aβ oligomers bind to TREM2, inducing shedding of sTREM2. Wild-type sTREM2 inhibits Aβ oligomerization, fibrillization and neurotoxicity, and disaggregates preformed Aβ oligomers and protofibrils. In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aβ, but rather promotes Aβ protofibril formation and neurotoxicity. Thus, in addition to mediating phagocytosis, wild-type TREM2 may protect against amyloid pathology by Aβ-induced release of sTREM2 that blocks Aβ aggregation and neurotoxicity; while R47H sTREM2 promotes Aβ aggregation into neurotoxic forms, which may explain why the R47H variant gene increases AD risk several fold.


2020 ◽  
Vol 16 (6) ◽  
pp. 3920-3935
Author(s):  
Viet Hoang Man ◽  
Xibing He ◽  
Beihong Ji ◽  
Shuhan Liu ◽  
Xiang-Qun Xie ◽  
...  
Keyword(s):  

Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 408
Author(s):  
Alexander Pilozzi ◽  
Zhanyang Yu ◽  
Isabel Carreras ◽  
Kerry Cormier ◽  
Dean Hartley ◽  
...  

A large body of evidence indicates that dysregulation of cerebral biometals (Fe, Cu, Zn) and their interactions with amyloid precursor protein (APP) and Aβ amyloid may contribute to the Alzheimer’s disease (AD) Aβ amyloid pathology. However, the molecular underpinnings associated with the interactions are still not fully understood. Herein we have further validated the exacerbation of Aβ oligomerization by Cu and H2O2 in vitro. We have also reported that Cu enhanced APP translations via its 5′ untranslated region (5′UTR) of mRNA in SH-SY5Y cells, and increased Aβ amyloidosis and expression of associated pro-inflammatory cytokines such as MCP-5 in Alzheimer’s APP/PS1 doubly transgenic mice. This preliminary study may further unravel the pathogenic role of Cu in Alzheimer’s Aβ amyloid pathogenesis, warranting further investigation.


2020 ◽  
Author(s):  
Young Chul Youn ◽  
Byoung Sub Lee ◽  
Gwang Je Kim ◽  
Ji Sun Ryu ◽  
Kuntaek Lim ◽  
...  

Abstract INTRODUCTION: Oligomeric amyloid ß (Aß) is one of the major contributors to the pathomechanism of AD; Aß oligomerization in plasma can be measured using a Multimer Detection System-Oligomeric Aß (MDS-OAß) after incubation with spiked synthetic Aß. METHODS: We evaluated the clinical sensitivity and specificity of the MDS-OAß values by inBlood TM OAß test using heparin-treated plasma samples from 52 AD patients in comparison with 52 community-based subjects with normal cognition (NC). The inclusion criterion was proposed by the NINCDS-ADRDA and additionally required for the least 6 months of follow-up from the initial clinical diagnosis in the course of AD. RESULTS: The MDS-OAβ values were 1.43 ± 0.30 ng/ml in AD and 0.45 ± 0.19 ( p <0.001) in NC, respectively. Using a cut-off value of 0.78 ng/ml, the results revealed that 100% sensitivity 92.31% specificity. DISCUSSION: MDS-OAß to measure plasma Aβ oligomerization is a valuable blood-based biomarker for clinical diagnosis of AD, with high sensitivity and specificity.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2316 ◽  
Author(s):  
Qiuchen Zheng ◽  
Micheal T. Kebede ◽  
Merc M. Kemeh ◽  
Saadman Islam ◽  
Bethany Lee ◽  
...  

The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic roles in Alzheimer’s disease (AD). Both Aβ and tau self-assemble to form the two major pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea possess the ability to target pathways associated with the formation of assemblies of Aβ and tau. Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer–monomer interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic agents against AD, a complex disease that involves many pathological mechanisms.


Sign in / Sign up

Export Citation Format

Share Document